普通产品经理要转AI领域要做哪些准备?

本文探讨了理解AI模型的逻辑,如Transformer的工作原理及其优势;强调了算法能力边界的认知对于产品设计和应用的重要性;并提到了AIGC工具如GPT、DALL·E和Codex的实际应用及案例分析。同时,论文阅读和跨领域沟通能力在AI产品经理中的价值也被提及,以及AI伦理和法律问题的必要关注。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI模型的逻辑

你不需要懂算法的代码是怎么写的,但你一定要了解这个算法它本身的实现逻辑是怎么样的。比如说现在的大模型基本上都是基于谷歌之前开源的transformer的结构。那你得了解transformer这个算法模型它的实现逻辑是什么?它为什么和过去的传统的AI的模型,它为什么牛逼,它为什么准确率高?主流的算法你都需要了解。

算法的能力边界

这是非常重要的一个点。比如说你要做产品,做运营,要把这些大模型的能力应在某一个领域。如果你不清楚大模型在哪些地方表现的好,哪些地方表现的不好,那么你就没有办法去解决那些bad case。如果你不了解这些模型的能力边界,你就没有办法真正让它变得可用,变成产品化,让别人为你的产品付钱

领域的新产品

这个是在面试中非常加分的项,尤其是国外现在火的生成式AI大模型之下的应用有哪些?它的逻辑是什么?优势是什么,劣势是什么?都应用在了哪些场景里面,做的怎么样?这个对你是非常加分的

AIGC工具体验:实际使用一些AIGC工具和平台,如GPT(文本生成)、DALL·E(图像生成)、Codex(代码生成)等,了解它们的功能和限制。
案例研究:研究成功的AIGC产品案例,分析其设计、用户体验、商业模式等。

论文阅读能力

我觉得如果你有一定的论文阅读能力,去找一些生成式AI AIGC大模型领域的论文去看,这个对你的帮助也很大

– by @Super产品林木


其他

跨领域沟通:作为产品经理,需要与工程师、设计师、营销等多个职能部门合作,因此强大的跨领域沟通能力非常关键。
关注行业动态:通过阅读相关新闻、报告、博客以及参加行业会议、研讨会等方式,保持对AI行业最新发展趋势的了解。
了解AI伦理和法律问题:学习AI伦理原则,了解如何设计和开发负责任的AI系统,避免偏见和歧视。了解与AI相关的法律法规,包括数据隐私保护、版权问题等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值