前十个是来自圣经的十大算法:
发起人的描述:《来自圣经的证明》收集了数十个简洁而优雅的数学证明,迅速赢得了大批数学爱好者的追捧。如果还有一本《来自圣经的算法》,哪些算法会列入其中呢?
第一名:Union-find
严格地说,并查集是一种 数据结构 ,它专门用来处理集合的合并操作和查询操作。并查集巧妙地借用了树结构,使得 编程 复杂度降低到了令人难以置信的地步;用上一些递归技巧后,各种操作几乎都能用两行代码搞定。而路径压缩的好主意,更是整个数据结构的画龙点睛之笔。并查集的效率极高,单次操作的时间复杂度几乎可以看作是常数级别;但由于数据结构的实际行为难以预测,精确的时间复杂度分析需要用到不少高深的技巧。
第二名:Knuth-Morris-Pratt字符串匹配算法
关于此算法的介绍,请参考此文:六、教你从头到尾彻底理解KMP算法。KMP算法曾经落选于二十世纪最伟大的十大算法,但人们显然不能接受,如此漂亮、高效的KMP算法竟然会落选。所以,此次最终投票产出生,KMP算法排到了第二名。
第三名:BFPRT 算法
1973 年,Blum、Floyd、Pratt、Rivest、Tarjan集体出动,合写了一篇题为 “Time bounds for selection” 的论文,给出了一种在数组中选出第 k 大元素的算法,俗称"中位数之中位数算法"。依靠一种精心设计的 pivot 选取方法,该算法从理论上保证了最坏情形下的线性时间复杂度,打败了平均线性、最坏 O(n^2) 复杂度的传统算法。一群大牛把递归算法的复杂度分析玩弄于骨掌股掌之间,构造出了一个当之无愧的来自圣经的算法。
我在这里简单介绍下在数组中选出第k大元素的时间复杂度为O(N)的算法:
类似快排中的分割算法:
每次分割后都能返回枢纽点在数组中的位置s,然后比较s与k的大小
若大的话,则再次递归划分array,
小的话,就递归array //s为中间枢纽点元素。
否则返回array,就是partition中返回的值。 //就是要找到这个s。
找到符合要求的s值后,再遍历输出比s小的那一边的元素。
各位可参考在:算法导论上,第九章中,以期望线性时间做选择,一节中,
我找到了这个 寻找数组中第k小的元素的,平均时间复杂度为O(N)的证明:上述程序的期望运行时间,最后证明可得O(n),且假定元素是不同的。
第四名:Quicksort(快速排序)
快速排序算法几乎涵盖了所有经典算法的所有榜单。它曾获选二十世纪最伟大的十大算法(参考这:细数二十世纪最伟大的10大算法)。关于快速排序算法的具体介绍,请参考我写的这篇文章:一之续、快速排序算法的深入分析,及十二、快速排序算法之所有版本的c/ c++ 实现。
第五名:Floyd-Warshall all-pairs最短路径算法
关于此算法的介绍,可参考我写的此文:几个最短路径算法比较( http://blog.csdn.net/v_JULY_v/archive/2011/02/12/6181485.aspx )。
d: 二维数组. d最小花费、或最短路径的邻边。
for k from 1 to n:
for i from 1 to n:
for j from 1 to n:
d = min(d, d + d)
第六名:Gentry's Fully Homomorphic Encryption Scheme(绅士完全同态加密机制)算法。
此算法很漂亮,它允许第三方执行任意加密 数据 运算得不到私钥(不是很了解)。
第七名:Depth First Search、Breadth First Search(深度、广度优先搜索)
它们是许多其他算法的基础。关于深度、广度优先搜索算法的具体介绍,请参考此文:教你通透彻底理解:BFS和DFS优先搜索算法。
第八名:Miller-Rabin作的类似的试验测试
这个想法是利用素数的性质(如使用费马大定理)的小概率寻找见证不数素数。如果没有证据是足够的随机检验后发现,这一数字为素数。
第九名:Binary Search (二分查找)
在一个有序的集合中查找元素,可以使用二分查找算法,也叫二分搜索。二分查找算法先比较位于集合中间位置的元素与键的大小,有三种情况(假设集合是从小到大排列的):
1.键小于中间位置的元素,则匹配元素必在左边(如果有的话),于是对左边的区域应用二分搜索。
2.键等于中间位置的元素,所以元素找到。
3.键大于中间位置的元素,则匹配元素必在右边(如果有的话),于是对右边的区域应用二分搜索。
另外,当集合为空,则代表找不到。
第十名:Huffman coding(霍夫曼编码)
霍夫曼 编码(Huffman Coding)是一种编码方式,是一种用于无损 数据 压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的,并发表于《一种构建极小多余编码的方法》(A Method for the Construction of Minimum-Redundancy Codes)一文。
十一、Cooley-Tukey FFT算法。快速 傅里叶变换 算法。关于傅里叶变换算法的介绍,请参考此文:十、从头到尾彻底理解傅里叶变换算法、上,及十、从头到尾彻底理解傅里叶变换算法、下。
十二、linear programming,线性规划。
十三、Dijkstra 算法。与上第五一样,又一种最短路径算法。具体介绍,请参考:二之续、彻底理解Dijkstra算法,和二(再续)、Dijkstra 算法+fibonacci堆的逐步c实现。
十四、Merge Sort。归并排序。
十五、Ford–Fulkerson算法。网络最大流算法。
十六、辗转相除法。
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法,即求两个正整数之最大公因子的算法。此算法作为TAOCP第一个算法被阐述,足见此算法被重视的程度。它是已知最古老的算法, 其可追溯至3000年前。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。扩展的辗转相除法则构造性地证明了,对任意整数a和b ,存在一对x、y使得 ax + by = gcd(a, b) 。
十七、RSA加密演算法。一种加密算法,日后再做详细介绍。
十八、遗传算法。可参考本人写的关于GA 算法的这篇文章:七、遗传算法 透析GA本质。
十九、最大期望(EM)算法。
此 算法 入选数据挖掘领域十大经典算法。在统计计算中,最大期望(EM)算法是在概率(probabilistic) 模型 中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
二十、数据压缩
数据 压缩是通过减少 计算机 中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
二十一、Hash函数
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。关于hash表的详细阐述,请参考此篇文章:十一、从头到尾彻底解析Hash表算法。
二十二、Dynamic Programming(动态规划)。关于动态规划的粗略介绍,请参考此文:三、dynamic programming。
二十三、堆排序算法。
堆排序算法作为一种快速稳定的算法,其平均时间复杂度(最坏也为)O(n*lgn)。当然,在实际应用中,一个实现的好的快速排序算法仍然要优于堆排序算法。不过,堆 数据结构 还可以作为高效的优先级队列。对堆排序算法作简单了解,可参考这:堆排序算法。
二十四、递归与回溯 算法 。此俩个算法,相信各位比较熟悉,在此不做赘述。
二十五、最长公共子序列
最长公共子序列,英文缩写为LCS(Longest Common Subsequence)。其定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
动态规划的一个计算最长公共子序列的方法如下:
以两个序列 X、Y 为例子:
设有二维数组 f 表示 X 的 i 位和 Y 的 j 位之前的最长公共子序列的长度,则有:
f = same(1,1)
f = max{f+same(i,j),f,f}
其中,same(a,b)当 X 的第 a 位与 Y 的第 b 位完全相同时为“1”,否则为“0”。
此时,f中最大的数便是 X 和 Y 的最长公共子序列的长度,依据该数组回溯,便可找出最长公共子序列。
该算法的空间、时间复杂度均为O(n2),经过优化后,空间复杂度可为O(n),时间复杂度为O(nlogn)。更多详情,参见之前写的一篇拙文(不过,鉴于写的糟,日后会重写):三、dynamic programming。
二十六、红黑树的算法与实现
关于红黑树,linux内核中有实现,本BLOG内也已经写了4篇红黑树系列的文章。详情,请参考:五(续)、教你透彻了解红黑树。
二十七、A*搜寻算法。
相对于BFS、Dijkstra 等算法,A*搜寻算法作为一种高效的最短路径搜索算法,如今,已得到日益广泛的应用。初步了解A*搜寻算法的高效及与其它最短路径算法的比较,请参考此文:一(续)、A*,Dijkstra,BFS算法性能比较及A*算法的应用。
二十八、图像特征提取与匹配之SIFT算法
sift,尺度不变特征转换,是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。关于此算法,请参考如下,粗略介绍:九、图像特征提取与匹配之SIFT算法,利用第三方库编译过程:九(续)、sift算法的编译与实现,c语言一步一步实现sift算法:九之再续:一步一步用c语言实现sift算法、上,及九之再续:教你一步一步用c语言实现sift算法、下。
发起人的描述:《来自圣经的证明》收集了数十个简洁而优雅的数学证明,迅速赢得了大批数学爱好者的追捧。如果还有一本《来自圣经的算法》,哪些算法会列入其中呢?
第一名:Union-find
严格地说,并查集是一种 数据结构 ,它专门用来处理集合的合并操作和查询操作。并查集巧妙地借用了树结构,使得 编程 复杂度降低到了令人难以置信的地步;用上一些递归技巧后,各种操作几乎都能用两行代码搞定。而路径压缩的好主意,更是整个数据结构的画龙点睛之笔。并查集的效率极高,单次操作的时间复杂度几乎可以看作是常数级别;但由于数据结构的实际行为难以预测,精确的时间复杂度分析需要用到不少高深的技巧。
第二名:Knuth-Morris-Pratt字符串匹配算法
关于此算法的介绍,请参考此文:六、教你从头到尾彻底理解KMP算法。KMP算法曾经落选于二十世纪最伟大的十大算法,但人们显然不能接受,如此漂亮、高效的KMP算法竟然会落选。所以,此次最终投票产出生,KMP算法排到了第二名。
第三名:BFPRT 算法
1973 年,Blum、Floyd、Pratt、Rivest、Tarjan集体出动,合写了一篇题为 “Time bounds for selection” 的论文,给出了一种在数组中选出第 k 大元素的算法,俗称"中位数之中位数算法"。依靠一种精心设计的 pivot 选取方法,该算法从理论上保证了最坏情形下的线性时间复杂度,打败了平均线性、最坏 O(n^2) 复杂度的传统算法。一群大牛把递归算法的复杂度分析玩弄于骨掌股掌之间,构造出了一个当之无愧的来自圣经的算法。
我在这里简单介绍下在数组中选出第k大元素的时间复杂度为O(N)的算法:
类似快排中的分割算法:
每次分割后都能返回枢纽点在数组中的位置s,然后比较s与k的大小
若大的话,则再次递归划分array,
小的话,就递归array //s为中间枢纽点元素。
否则返回array,就是partition中返回的值。 //就是要找到这个s。
找到符合要求的s值后,再遍历输出比s小的那一边的元素。
各位可参考在:算法导论上,第九章中,以期望线性时间做选择,一节中,
我找到了这个 寻找数组中第k小的元素的,平均时间复杂度为O(N)的证明:上述程序的期望运行时间,最后证明可得O(n),且假定元素是不同的。
第四名:Quicksort(快速排序)
快速排序算法几乎涵盖了所有经典算法的所有榜单。它曾获选二十世纪最伟大的十大算法(参考这:细数二十世纪最伟大的10大算法)。关于快速排序算法的具体介绍,请参考我写的这篇文章:一之续、快速排序算法的深入分析,及十二、快速排序算法之所有版本的c/ c++ 实现。
第五名:Floyd-Warshall all-pairs最短路径算法
关于此算法的介绍,可参考我写的此文:几个最短路径算法比较( http://blog.csdn.net/v_JULY_v/archive/2011/02/12/6181485.aspx )。
d: 二维数组. d最小花费、或最短路径的邻边。
for k from 1 to n:
for i from 1 to n:
for j from 1 to n:
d = min(d, d + d)
第六名:Gentry's Fully Homomorphic Encryption Scheme(绅士完全同态加密机制)算法。
此算法很漂亮,它允许第三方执行任意加密 数据 运算得不到私钥(不是很了解)。
第七名:Depth First Search、Breadth First Search(深度、广度优先搜索)
它们是许多其他算法的基础。关于深度、广度优先搜索算法的具体介绍,请参考此文:教你通透彻底理解:BFS和DFS优先搜索算法。
第八名:Miller-Rabin作的类似的试验测试
这个想法是利用素数的性质(如使用费马大定理)的小概率寻找见证不数素数。如果没有证据是足够的随机检验后发现,这一数字为素数。
第九名:Binary Search (二分查找)
在一个有序的集合中查找元素,可以使用二分查找算法,也叫二分搜索。二分查找算法先比较位于集合中间位置的元素与键的大小,有三种情况(假设集合是从小到大排列的):
1.键小于中间位置的元素,则匹配元素必在左边(如果有的话),于是对左边的区域应用二分搜索。
2.键等于中间位置的元素,所以元素找到。
3.键大于中间位置的元素,则匹配元素必在右边(如果有的话),于是对右边的区域应用二分搜索。
另外,当集合为空,则代表找不到。
第十名:Huffman coding(霍夫曼编码)
霍夫曼 编码(Huffman Coding)是一种编码方式,是一种用于无损 数据 压缩的熵编码(权编码)算法。1952年,David A. Huffman在麻省理工攻读博士时所发明的,并发表于《一种构建极小多余编码的方法》(A Method for the Construction of Minimum-Redundancy Codes)一文。
十一、Cooley-Tukey FFT算法。快速 傅里叶变换 算法。关于傅里叶变换算法的介绍,请参考此文:十、从头到尾彻底理解傅里叶变换算法、上,及十、从头到尾彻底理解傅里叶变换算法、下。
十二、linear programming,线性规划。
十三、Dijkstra 算法。与上第五一样,又一种最短路径算法。具体介绍,请参考:二之续、彻底理解Dijkstra算法,和二(再续)、Dijkstra 算法+fibonacci堆的逐步c实现。
十四、Merge Sort。归并排序。
十五、Ford–Fulkerson算法。网络最大流算法。
十六、辗转相除法。
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法,即求两个正整数之最大公因子的算法。此算法作为TAOCP第一个算法被阐述,足见此算法被重视的程度。它是已知最古老的算法, 其可追溯至3000年前。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。扩展的辗转相除法则构造性地证明了,对任意整数a和b ,存在一对x、y使得 ax + by = gcd(a, b) 。
十七、RSA加密演算法。一种加密算法,日后再做详细介绍。
十八、遗传算法。可参考本人写的关于GA 算法的这篇文章:七、遗传算法 透析GA本质。
十九、最大期望(EM)算法。
此 算法 入选数据挖掘领域十大经典算法。在统计计算中,最大期望(EM)算法是在概率(probabilistic) 模型 中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
二十、数据压缩
数据 压缩是通过减少 计算机 中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
二十一、Hash函数
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。关于hash表的详细阐述,请参考此篇文章:十一、从头到尾彻底解析Hash表算法。
二十二、Dynamic Programming(动态规划)。关于动态规划的粗略介绍,请参考此文:三、dynamic programming。
二十三、堆排序算法。
堆排序算法作为一种快速稳定的算法,其平均时间复杂度(最坏也为)O(n*lgn)。当然,在实际应用中,一个实现的好的快速排序算法仍然要优于堆排序算法。不过,堆 数据结构 还可以作为高效的优先级队列。对堆排序算法作简单了解,可参考这:堆排序算法。
二十四、递归与回溯 算法 。此俩个算法,相信各位比较熟悉,在此不做赘述。
二十五、最长公共子序列
最长公共子序列,英文缩写为LCS(Longest Common Subsequence)。其定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
动态规划的一个计算最长公共子序列的方法如下:
以两个序列 X、Y 为例子:
设有二维数组 f 表示 X 的 i 位和 Y 的 j 位之前的最长公共子序列的长度,则有:
f = same(1,1)
f = max{f+same(i,j),f,f}
其中,same(a,b)当 X 的第 a 位与 Y 的第 b 位完全相同时为“1”,否则为“0”。
此时,f中最大的数便是 X 和 Y 的最长公共子序列的长度,依据该数组回溯,便可找出最长公共子序列。
该算法的空间、时间复杂度均为O(n2),经过优化后,空间复杂度可为O(n),时间复杂度为O(nlogn)。更多详情,参见之前写的一篇拙文(不过,鉴于写的糟,日后会重写):三、dynamic programming。
二十六、红黑树的算法与实现
关于红黑树,linux内核中有实现,本BLOG内也已经写了4篇红黑树系列的文章。详情,请参考:五(续)、教你透彻了解红黑树。
二十七、A*搜寻算法。
相对于BFS、Dijkstra 等算法,A*搜寻算法作为一种高效的最短路径搜索算法,如今,已得到日益广泛的应用。初步了解A*搜寻算法的高效及与其它最短路径算法的比较,请参考此文:一(续)、A*,Dijkstra,BFS算法性能比较及A*算法的应用。
二十八、图像特征提取与匹配之SIFT算法
sift,尺度不变特征转换,是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。关于此算法,请参考如下,粗略介绍:九、图像特征提取与匹配之SIFT算法,利用第三方库编译过程:九(续)、sift算法的编译与实现,c语言一步一步实现sift算法:九之再续:一步一步用c语言实现sift算法、上,及九之再续:教你一步一步用c语言实现sift算法、下。