当我们训练自己的神经网络的时候,无一例外的就是都会加上一句 sess.run(tf.global_variables_initializer())
,这行代码的官方解释是 初始化模型的参数。那么,它到底做了些什么?
一步步看源代码:(代码在后面)
global_variables_initializer
返回一个用来初始化 计算图中 所有global variable
的op
。
- 这个
op
到底是啥,还不清楚。 - 函数中调用了
variable_initializer()
和global_variables()
- 这个
global_variables()
返回一个Variable list
,里面保存的是gloabal variables
。variable_initializer()
将Variable list
中的所有Variable
取出来,将其variable.initializer
属性做成一个op group
。- 然后看
Variable
类的源码可以发现,variable.initializer
就是一个assign op
。
所以: sess.run(tf.global_variables_initializer())
就是 run
了 所有global Variable
的 assign op
,这就是初始化参数的本来面目。
def global_variables_initializer():
"""Returns an Op that initializes global variables.
Returns:
An Op that initializes global variables in the graph.
"""
return variables_initializer(global_variables())
def global_variables():
"""Returns global variables.
Returns:
A list of `Variable` objects.
"""
return ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)
def variables_initializer(var_list, name="init"):
"""Returns an Op that initializes a list of variables.
Args:
var_list: List of `Variable` objects to initialize.
name: Optional name for the returned operation.
Returns:
An Op that run the initializers of all the specified variables.
"""
if var_list:
return control_flow_ops.group(*[v.initializer for v in var_list], name=name)
return control_flow_ops.no_op(name=name)
class Variable(object):
def _init_from_args(self, ...):
self._initializer_op = state_ops.assign(
self._variable, self._initial_value,
validate_shape=validate_shape).op
@property
def initializer(self):
"""The initializer operation for this variable."""
return self._initializer_op