树形数据结构

树是有限个节点的集合。树的一些基本概念:

结点

包含一个数据元素及若干指向其子树的分支

结点的度

一个结点的子树的数目

树的度

树中所有结点的度的最大值

叶子节点

树中度为0的结点,即左右孩子结点均不存在的结点

孩子

一个结点的直接后继称为该节点的孩子

双亲

一个结点的直接前驱称为该节点的双亲

兄弟

同一个双亲结点的孩子节点互称为兄弟

树的深度

树中所有节点的层次的最大值,也成为树的高度

二叉树

二叉树定义

特点:
1.每个节点最多有两颗子树
2.二叉树的子树有左子树和右子树之分,其次序不能够随意互换
结点数据类型:

在这里插入代码片
typedef struct tree_node {
	void *data;
	struct tree_node *lchild;
	struct tree_node *rchild;
}tree_node;
遍历二叉树

1.先序遍历
首先访问根节点,然后先序遍历根的左子树,最后先序遍历根的右子树

在这里插入代码片
void pre_order_tree(tree_node *root)
{
	if (root != NULL) {
		print(root);//自定义函数
		pre_order_tree(root->lchild);
		pre_order_tree(root->rchild);
	}
}

2.中序遍历
首先中序访问根的左子树,然后访问根节点,最后中序遍历根的右子树

在这里插入代码片
void in_order_tree(tree_node *root)
{
	if (root != NULL) {
		in_order_tree(root->lchild);
		print(root)
		in_order_tree(root->rchild);
	}
}

3.后序遍历
后续遍历根的左子树,然后后续遍历根的右子树,最后后序访问根节点

在这里插入代码片
void post_order_tree(tree_node *root)
{	
	if (root != NULL) {
		post_order_tree(root->lchild);
		post_order_tree(root->rchild);
		print(root);
	}
}

以上都是采用递归的写法,也可以采用非递归算法;来实现,中序遍历的非递归代码如下:

在这里插入代码片
void in_order_tree(tree_node *root)
{
	tree_node *p = root;
	seq_stack s;
	seq_stack_init(&s);//初始化栈
	while(p && is_seqstack_empty(s)) {
		if (p) {
			seq_stack_push(&s, p);
			p = p->lchild;
		} else {
			seq_stack_pop(&s, &p);
			print(p);
			p = p->rchild;
		}
	} 
}

层次遍历

在这里插入代码片
void level_order_tree(tree_node *root)
{
	seq_queue q;
	tree_node *p = root;
	seq_queue_init(&q);
	if (root) {
		seq_queue_en(&q, root);
	}

	while(q.front) {
		seq_queue_de(&q, &p);
		print(p);
		if (p->lchild) 
			seq_queue_en(&q, p->lchild);
		if (p->rchild)
			seq_queue_en(&q, p->rchild);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值