树是有限个节点的集合。树的一些基本概念:
结点
包含一个数据元素及若干指向其子树的分支
结点的度
一个结点的子树的数目
树的度
树中所有结点的度的最大值
叶子节点
树中度为0的结点,即左右孩子结点均不存在的结点
孩子
一个结点的直接后继称为该节点的孩子
双亲
一个结点的直接前驱称为该节点的双亲
兄弟
同一个双亲结点的孩子节点互称为兄弟
树的深度
树中所有节点的层次的最大值,也成为树的高度
二叉树
二叉树定义
特点:
1.每个节点最多有两颗子树
2.二叉树的子树有左子树和右子树之分,其次序不能够随意互换
结点数据类型:
在这里插入代码片
typedef struct tree_node {
void *data;
struct tree_node *lchild;
struct tree_node *rchild;
}tree_node;
遍历二叉树
1.先序遍历
首先访问根节点,然后先序遍历根的左子树,最后先序遍历根的右子树
在这里插入代码片
void pre_order_tree(tree_node *root)
{
if (root != NULL) {
print(root);//自定义函数
pre_order_tree(root->lchild);
pre_order_tree(root->rchild);
}
}
2.中序遍历
首先中序访问根的左子树,然后访问根节点,最后中序遍历根的右子树
在这里插入代码片
void in_order_tree(tree_node *root)
{
if (root != NULL) {
in_order_tree(root->lchild);
print(root)
in_order_tree(root->rchild);
}
}
3.后序遍历
后续遍历根的左子树,然后后续遍历根的右子树,最后后序访问根节点
在这里插入代码片
void post_order_tree(tree_node *root)
{
if (root != NULL) {
post_order_tree(root->lchild);
post_order_tree(root->rchild);
print(root);
}
}
以上都是采用递归的写法,也可以采用非递归算法;来实现,中序遍历的非递归代码如下:
在这里插入代码片
void in_order_tree(tree_node *root)
{
tree_node *p = root;
seq_stack s;
seq_stack_init(&s);//初始化栈
while(p && is_seqstack_empty(s)) {
if (p) {
seq_stack_push(&s, p);
p = p->lchild;
} else {
seq_stack_pop(&s, &p);
print(p);
p = p->rchild;
}
}
}
层次遍历
在这里插入代码片
void level_order_tree(tree_node *root)
{
seq_queue q;
tree_node *p = root;
seq_queue_init(&q);
if (root) {
seq_queue_en(&q, root);
}
while(q.front) {
seq_queue_de(&q, &p);
print(p);
if (p->lchild)
seq_queue_en(&q, p->lchild);
if (p->rchild)
seq_queue_en(&q, p->rchild);
}
}