代码如下:
/***********************************************************************************/
#define MAXVEX 9
#define INFINITY 65535
typedef int Pathmatirx[MAXVEX]; /*用于存储最短路径下标的数组*/
typedef int ShortPathTbale[MAXVEX]; /*用于存储到各点最短路径的权值和*/
/*Dijkstra算法,求有向网G的V0顶点v最短路径P[v]及带权长度D[v]*/
/*P[v]的值为前驱下标,D[v]的值表示V0到V的最短路径长度和*/
void ShortestPath_Dijktra(MGraph G,int v0,Pathmatirx *P,ShortPathTbale*D)
{
int v, w, k, min;
int final[MAXVEX]; /*final[w]=1表示求得顶点V0到Vw的最短路径*/
for (v = 0; v < G.numVertexes; v++)
{
final[v] = 0; /*全部顶点初始化为未知最短路径*/
(*P)[v] = 0; /*初始化路径数据*/
(*D)[v] = G.arc[v0][v]; /*初始化v0点到各顶点的初始权值*/
}
(*D)[v0] = 0; /*v0到v0路径为0*/
final[v0] = 1; /*v0到v0不需要求路径*/
/*开始主循环,每次求得v0到某个顶点的最短路径*/
for (v = 1; v < G.numVertexes; v++)
{
min = INFINITY; /*当前所知离v0顶点的最近距离,初始化为无穷大*/
for (w = 0; w < G.numVertexes; w++)
{
if (!final[w] && (*D)[w] < min)
{
k = w;
min = (*D)[w]; /*w顶点距离v0顶点更近*/
}
}
final[k] = 1;
for (w = 0; w < G.numVertexes; w++)
{
if (!final[w] && (min + G.arc[k][w] < (*D)[w]))
{
(*D)[w] = min + G.arc[k][w];
(*P)[w] = k;
}
}
}
}
/***********************************************************************************/