论文分享
文章平均质量分 97
分享科研过程中读过的论文
BlackSheep_blog
程序员科研工作者
展开
-
解开因果关系:因果发现和推理中的假设
因果关系一直是一个新兴的研究领域,导致文献中充满了解决因果关系不同部分的不同组成部分。对于研究人员来说,越来越难以辨别他们必须遵守的假设,以便从因果概念或方法中收集可靠的结论。本文旨在消除因果推理和观察数据因果发现中出现的不同因果概念的歧义,方法是将它们归因于 Pearl 的因果层次结构的不同层次。我们将为读者提供在所需的层次结构级别进行因果推理所需的假设的综合安排。因此,将强调这些因果概念中的每一个的假设,并将检查它们伴随的图形组件。原创 2023-07-24 13:39:40 · 1201 阅读 · 0 评论 -
CausalGAN:通过对抗训练学习因果隐式生成模型
我们提出了一种对抗训练的方法,用于给定因果图的情况下学习因果隐式生成模型。我们表明,如果生成器的结构与给定的因果图一致,那么对抗训练可以用于学习一个生成模型,该模型具有真实的观测和干预分布。我们考虑了根据给定的二值标签生成人脸图像的应用,其中标签之间的依赖结构通过因果图来保留。这个问题可以看作是学习一个关于图像和标签的因果隐式生成模型。我们设计了一个两阶段的过程来解决这个问题。首先,我们使用一个与因果图一致的神经网络作为生成器,训练一个关于二值标签的因果隐式生成模型。原创 2023-07-24 13:06:59 · 420 阅读 · 0 评论