解开因果关系:因果发现和推理中的假设

Disentangling causality: assumptions in causal discovery and inference 解开因果关系:因果发现和推理中的假设

论文可在Sci-Hub或谷歌学术下载

Abstract

因果关系一直是一个新兴的研究领域,导致文献中充满了解决因果关系不同部分的不同组成部分。对于研究人员来说,越来越难以辨别他们必须遵守的假设,以便从因果概念或方法中收集可靠的结论。本文旨在消除因果推理和观察数据因果发现中出现的不同因果概念的歧义,方法是将它们归因于 Pearl 的因果层次结构的不同层次。我们将为读者提供在所需的层次结构级别进行因果推理所需的假设的综合安排。因此,将强调这些因果概念中的每一个的假设,并将检查它们伴随的图形组件。我们从参数和非参数的角度展示了哪些假设对于弥合因果发现、因果识别和因果推理之间的差距是必要的。最后,本文指出了与研究人员灵活采用以参与因果发现、因果识别和因果推理的强假设相关的进一步研究领域。

Keywords

因果发现·因果识别·因果推断·观察数据·因果假设

1 Introduction

具体来说,本文的结构如下。 在第 2 节中简要介绍了预备知识和结构因果模型 (SCM) 之后,本文从第 3 节中因果关系的初步概念(潜在结果框架)开始,并继续检验该概念固有的假设。 然后,我们在第 4 节的层次结构的关联级别引入贝叶斯网络、d-分离和一些等效的马尔可夫假设。 我们将展示后者如何有助于贝叶斯网络推理,并强调可用于在第 4.2 节的层次结构的第一层进行推理的可用工具和条件假设。 第 5 节将介绍层次结构干预级别的概念和假设。 在第 5.1 节中,介绍了允许非参数和参数结构学习的不同假设集。随后的第 5.2 节描述了非参数和参数推理方法的不同假设和概念,同时阐明了两种方法之间的交汇点 . 第 5.3 节中提到了干预水平上与假定假设的一些可能偏差以及相关参考文献。 我们继续介绍各种反事实模型和推理技术,以在第 6 节的层次结构的反事实级别进行因果关系推理。 最后,在第 7 节中,我们总结了结果并根据明确的假设提出了未来的研究方向

2 Preliminaries

3 Potential outcome framework

SUTVA是稳定单元处理值假设(Stable Unit Treatment Value Assumption)的缩写。它实际上包含了两个假设:

  • 任何单元的潜在结果不随其他单元的处理分配而变化。这也被称为无干扰假设(no-interference assumption),意味着单元之间没有相互影响或溢出效应。
  • 对于每个单元,每个处理水平没有不同的形式或版本,导致不同的潜在结果。这也被称为无隐藏变异假设(no hidden variation assumption),意味着处理是明确和一致的。

SUTVA是因果推断中通常做出的一个关键假设,因为它简化了潜在结果和观察结果之间的关系。如果SUTVA被违反了,那么我们可能需要更复杂的模型来考虑单元之间的相互作用或处理的异质性。

3.1 Potential outcomes

3.2 Randomized control trials

随机对照试验被广泛认为是检索平均因果效应的黄金标准。这是因为随机对照试验固有的三个假设。

Assumption 1 (Consistency) -假设 1(一致性)

Assumption 2 (No-interference) -假设 2(无干预)

Assumption 3 (Ignorability/exchangeability)-假设 3(可忽略性/可交换性)

3.3 Beyond randomized control trials

Assumption 4 (Conditional inorability) -假设4(条件可忽略性假设)

Assumption 5 (Positivity)-假设5(正性假设)

4 Associational level of the hierarchy 层次结构的关联级别

4.1 Bayesian networks

Assumption 6 (Local Markov)-假设 6(局部马尔可夫)

Assumption 7 (Global markov)-假设 7(全局马尔可夫)

Assumption 8 (Bayesian network factorization)-假设 8(贝叶斯网络分解)

Assumption 9 (Minimality)-假设 9(最小性)

4.2 Bayesian network inference 贝叶斯网络推理

5 Interventional level of the hierarchy 层次结构的干预水平


Fig. 6 Causal discovery assumption sets是一个图表,显示了在不同的假设集合下进行因果发现的可能性。因果发现是一种从观测数据中推断变量之间因果关系的过程12。因果发现需要满足一些假设,例如因果马尔可夫条件(CMC)和因果忠实条件(CFC)。这些假设可以用有向无环图(DAG)来表示,其中节点代表变量,边代表因果依赖关系。

图表中的不同紫色圆圈代表了论文中第5.1节介绍的不同的假设集合1,它们可以用于进行因果发现。图表中的方框代表了进行因果发现所必需的假设,它们可能与多个假设集合有重叠。例如,无反馈假设(NF)是指DAG中不存在从后代到祖先的路径,它是所有假设集合的共同要求。而无潜在混杂者假设(NPC)是指DAG中不存在未观测到的共同原因,它只适用于部分假设集合。

简而言之,Fig. 6 Causal discovery assumption sets展示了在不同的假设条件下,如何利用DAG来进行因果发现的过程。

5.1 Causal discovery

Assumption 10 (Independent and identically distributed (i.i.d.))-假设 10(独立同分布 (i.i.d.))

Assumption 11 (Faithfulness) -假设 11(忠诚)

Assumption 12 (Causal sufciency)-假设 12(因果充分性)

因果充分性、马尔可夫、忠诚度、非循环性和 i.i.d.假设构成了允许因果发现的第一个假设集。
The causal sufciency, Markov, faithfulness, acyclicity and i.i.d. assumptions make up the first assumption set that allow causal discovery

5.1.1 Causal discovery with causal sufciency 具有因果充分性的因果发现

如图 6 的顶部圆圈所示,根据这些假设集合,可以仅使用观察数据来研究基础数据生成过程的结构。第一种算法是 Spirtes、Glymour 和 Scheines 算法 (SGS)(Spirtes 等人,1990 年),紧随其后的是 Peter-Clarke 算法 (PC)(Spirtes 和 Glymour,1991 年)。两者都是基于约束的方法,

5.1.2 Causal discovery without causal sufciency 没有因果充分性的因果发现

因果充分性的假设可以放宽。在这种情况下,我们认识到观察数据中可能存在缺失的共同原因,感兴趣的目标应该能够考虑到未观察到的混杂因素。考虑到未观察到的混杂因素的存在并在边际化下封闭的最小的DAG超类是最大祖先图(MAG)(Richardson and Spirtes 2002)。类似于多个DAG可以编码相同的独立性约束,多个MAG也可以表示相同的条件独立性。这就产生了部分祖先图(PAG),它代表具有相同独立性约束的MAG的马尔科夫等价类。

重要的是要注意到未观察到的混杂物的存在也导致了d-分离的一个稍加修改的版本,它代表了与MAG有关的条件独立性,称为m-分离。这导致了马尔科夫假设和忠实性假设的自然延伸,即半马尔科夫假设和m-忠实性。

可以从观测数据中提取PAG的算法,如快速因果推断(FCI)(Spirtes等人,2000年)、贪婪快速因果推断(GFCI)(Ogarrio等人,2016年)和真正快速因果推断(RFCI)(Colombo等人,2012年)都依赖于i.i.d.假设、半马尔科夫假设和m-忠实度假设,如图6右下圈所示的非循环系统。

到目前为止,所介绍的算法有两个主要缺点。首先,假定了传统的忠实性或其扩展到未观察到的混杂物模型(m-忠实性)。忠实性是一个很强的假设,很容易找到忠实性被违反的例子(Andersen 2013)。第二,所有引入的算法的输出都需要一个马尔科夫等价类的表示。为了利用获得的图形结构进行推理,应该采用关于数据生成过程的额外假设来指导图形结构中的边缘,而这些算法无法提供。这两个缺点都可以通过事先假设对数据生成过程的限制来规避。这将在下一节中讨论。

5.1.3 Parametric causal discovery and relaxations of faithfulness 参数化的因果发现和忠诚度的放宽

在珀尔(Pearl)的因果层次结构中,真正的调查对象是结构性因果模型(SCM,Structural Causal Model)。因为真正的结构因果模型几乎总是无法实现,所以人们不得不选择一个替代模型,至少可以解决层次结构中较低层次的问题。然而,通过对基础SCM的分布进行参数化的假设,其他的假设可以被绕过。

这些方法基于功能因果模型(FCM,Functional Causal Models),它相当于(Goudet等人,2019年)早期引入的SCM,其中我们将因变量写成其父辈和噪声项的函数。FCM的一个特例是线性非高斯非循环模型(LiNGAM),其定义如下:

Assumption 13 (LiNGAM)

当LiNGAM被假定时,存在基于独立分量分析(ICA-LiNGAM)的方法来完全恢复DAG(Shimizu等人,2006)。忠实性可以放弃,但因果关系的充分性、非周期性和i.i.d.假设应该被采纳。假设集已被总结在图6中。补充性的LiNGAM发现方法被进一步开发,以解释违反因果充分性的情况(Hoyer等人,2008)。此外,还有允许违反非周期性假设的变体(Lacerda等人,2012)。

还有一些关于数据生成过程的替代性假设(与LiNGAM不同),可以用来排除忠实性假设,并检索出完整的DAG。其中一些假设了一个加性噪声数据生成过程(Hoyer等人,2008a;Peters等人,2014)。更普遍的方法是假设后线性形式(Zhang和Hyvärinen 2009)、 其中已经证明,除了5个模型指定的情况外,所有的因果方向都是可识别的。即使在某些情况下不需要假设忠实性,也必须采用限制性较小的假设(Peters等人,2014)。

If one is not willing to commit to additional assumptions about the data generating process, but still considers faithfulness too strong of an assumption, one can adopt one of the many weaker versions of faithfulness (Zhang and Spirtes 2015), such as adjacency faithfulness (Spirtes et al. 2000; Ramsey et al. 2017), 2-adjacency faithfulness (Marx et al. 2021) and frugality (Forster et al. 2018) for which causal discovery algorithms exist or could be developed
如果不愿意承诺对数据生成过程的额外假设,但仍然认为忠实性是一个太强的假设,可以采用许多较弱的忠实性版本之一(Zhang和Spirtes 2015),如相邻忠实性(Spirtes等人,2000;Ramsey等人,2017)、2-相邻忠实性(Marx等人,2021)和节俭性(Forster等人,2018),对于这些算法,存在或可以开发因果发现算法

5.2 Identifcation and inference 识别与推理

5.2.1 Non‑parametric causal inference 非参数因果推理

Assumption 14 (Modularity)-假设 14(模块化)

Assumption 15 (Truncated factorization) -假设15(截断因式分解)

5.2.2 Parametric causal inference 参数因果推理
5.3 Discovery, identifcation and inference with more relaxations 发现、识别和推理更加放宽

随着 Peter-Clark 算法的扩展,关系因果发现 (RCD) 算法(Maier 等人 2013b)使得在违反无干扰假设的情况下提取真正的关系因果结构成为可能。

6 Counterfactuals 反事实

6.1 One‑step‑ahead potential outcomes 一步到位的潜在结果

Assumption 16 (One-step-ahead potential outcomes)-假设 16(领先一步的潜在结果)

Assumption 17 (Recursive substitution)-假设 17(递归替换)

6.2 Counterfactual models 反事实模型

Assumption 18 (FFRCISTGS independencies) -假设 18(FFRCISTGS 独立性)

Assumption 19 (NPSEM-ie independencies) -假设 19(NPSEM-ie 独立性)

6.3 Inference 推理

7 Discussion and future directions

Appendix A: Explanation fgures 附录 A:解释图

DirectLiNGAM_ A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model.pdf


DirectLiNGAM模型是一种基于非高斯性的线性无环结构方程模型,它可以在不使用任何先验知识的情况下,从观测数据中恢复因果结构和强度。为了使用DirectLiNGAM模型,需要满足以下几个因果领域的假设:

  • 无潜在混杂变量:假设观测变量之间没有共同的未观测的原因,也就是说,观测变量之间的相关性都是由直接或间接的因果关系引起的,而不是由潜在混杂变量引起的。
  • 无反馈环:假设观测变量之间的因果关系是无环的,也就是说,不存在一个变量通过一条有向路径回到自身,形成一个反馈环。
  • 线性关系:假设观测变量之间的因果关系是线性的,也就是说,每个变量都可以表示为其父变量(直接原因)的线性组合加上一个外部影响(误差项)。
  • 非高斯分布:假设每个外部影响都是非高斯分布的,并且彼此独立。这个假设使得模型可以利用非高斯性来识别因果结构,而不需要依赖于协方差矩阵。

这些假设限制了DirectLiNGAM模型可以适用的数据类型和场景,但也使得模型具有了一定的鲁棒性和可解释性。如果你想了解更多关于DirectLiNGAM模型的细节和原理,请参考论文。


根据我从网络上搜索到的结果,如果你的观测数据不能完全满足DirectLiNGAM模型的假设,但你仍然想用它来进行因果发现,你可以考虑以下几个方面:

检查数据的质量和完整性:你可以使用一些数据清洗和预处理的方法,如删除或填补缺失值,检测和修正异常值,标准化或归一化数据,等等。这些方法可以帮助你提高数据的可靠性和一致性,减少噪声和偏差。

使用先验知识或假设:如果你对因果结构有一些先验知识或假设,你可以将它们作为输入条件或约束,来辅助DirectLiNGAM模型的学习过程。例如,你可以指定某些变量之间是否存在因果路径,或者某些变量是否是外生变量。这些信息可以帮助你缩小搜索空间,提高估计的准确性和效率。

使用自适应或鲁棒的算法:如果你的数据不符合线性或非高斯性的假设,你可以尝试使用一些自适应或鲁棒的算法,来适应数据的分布特征或处理潜在的混杂变量。例如,你可以使用多元自适应回归样条(MARS)来处理非线性关系,或者使用混合高斯图模型(MGM)来处理混合类型的变量。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackSheep_blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值