概述
上一节我们尝试通过更复杂的模型(经典的全连接神经网络和卷积神经网络),提升手写数字识别模型训练的准确性。本节我们继续将“横纵式”教学法从横向展开,如 图1 所示,探讨损失函数的优化对模型训练效果的影响。
图1:“横纵式”教学法 — 损失函数优化
损失函数是模型优化的目标,用于在众多的参数取值中,识别最理想的取值。损失函数的计算在训练过程的代码中,每一轮模型训练的过程都相同,分如下三步:
- 先根据输入数据正向计算预测输出。
- 再根据预测值和真实值计算损失。
- 最后根据损失反向传播梯度并更新参数。
分类任务的损失函数
在之前的方案中,我们复用了房价预测模型的损失函数-均方误差。从预测效果来看,虽然损失不断下降,模型的预测值逐渐逼近真实值,但模型的最终效果不够理想。究其根本,不同的深度学习任务需要有各自适宜的损失函数。我们以房价预测和手写数字识别两个任务为例,详细剖析其中的缘由如下:
- 房价预测是回归任务,而手写数字识别是分类任务,使用均方误差作为分类任务的损失函数存在逻辑和效果上的缺欠。
- 房价可以是大于0的任何浮点数,而手写数字识别的输出只可能是0-9之间的10个整数,相当于一种标签。
- 在房价预测的案例中,由于房价本身是一个连续的实数值,因此以模型输出的数值和真实房价差距作为损失函数(loss)是符合道理的。但对于分类问题,真实结果是分类标签,而模型输出是实数值,导致以两者相减作为损失不具备物理含义。
那么,什么是分类任务的合理输出呢?分类任务本质上是“某种特征组合下的分类概率”,下面以一个简单案例说明,如 图2 所示。
图2:观测数据和背后规律之间的关系
在本案例中,医生根据肿瘤大小 x x x作为肿瘤性质 y y y的参考判断(判断的因素有很多,肿瘤大小只是其中之一),那么我们观测到该模型判断的结果是 x x x和 y y y的标签(1为恶性,0为良性)。而这个数据背后的规律是不同大小的肿瘤,属于恶性肿瘤的概率。观测数据是真实规律抽样下的结果,分类模型应该拟合这个真实规律,输出属于该分类标签的概率。
Softmax函数
如果模型能输出10个标签的概率,对应真实标签的概率输出尽可能接近100%,而其他标签的概率输出尽可能接近0%,且所有输出概率之和为1。这是一种更合理的假设!与此对应,真实的标签值可以转变成一个10维度的one-hot向量,在对应数字的位置上为1,其余位置为0,比如标签“6”可以转变成[0,0,0,0,0,0,1,0,0,0]。
为了实现上述思路,需要引入Softmax函数,它可以将原始输出转变成对应标签的概率,公式如下,其中 C C C是标签类别个数。
s o f t m a x ( x i ) = e x i ∑ j = 0 N e j x , i = 0 , . . . , C − 1 softmax(x_i) = \frac {e^{x_i}}{\sum_{j=0}^N{e^x_j}}, i=0, ..., C-1 softmax(xi)=∑j=0Nejxexi,i=0,...,C−1
从公式的形式可见,每个输出的范围均在0~1之间,且所有输出之和等于1,这是变换后可被解释成概率的基本前提。对应到代码上,我们需要在网络定义部分修改输出层:self.fc = Linear(input_dim=10, output_dim=1, act='softmax')
,即是对全连接层的输出加一个softmax运算。
图3 是一个三个标签的分类模型(三分类)使用的softmax输出层,从中可见原始输出的三个数字3、1、-3,经过softmax层后转变成加和为1的三个概率值0.88、0.12、0。
图3:网络输出层为softmax函数
上文解释了为何让分类模型的输出拟合概率的原因,但为何偏偏用softmax函数完成这个职能? 下面以二分类问题(只输出两个标签)进行探讨。
对于二分类问题,使用两个输出接入softmax作为输出层,等价于使用单一输出接入Sigmoid函数。如 图4 所示,利用两个标签的输出概率之和为1的条件,softmax输出0.6和0.4两个标签概率,从数学上等价于输出一个标签的概率0.6。
图4:对于二分类问题,等价于单一输出接入Sigmoid函数
在这种情况下,只有一层的模型为 S ( w T x i ) S(w^{T}x_i) S(wTxi), S S S为Sigmoid函数。模型预测为1的概率为 S ( w T x i ) S(w^{T}x_i) S(wTxi),模型预测为0的概率为 1 − S ( w T x i ) 1-S(w^{T}x_i) 1−S(wTxi)。
图5 是肿瘤大小和肿瘤性质的数据图。从图中可发现,往往尺寸越大的肿瘤几乎全部是恶性,尺寸极小的肿瘤几乎全部是良性。只有在中间区域,肿瘤的恶性概率会从0逐渐到1(绿色区域),这种数据的分布是符合多数现实问题的规律。如果我们直接线性拟合,相当于红色的直线,会发现直线的纵轴0-1的区域会拉的很长,而我们期望拟合曲线0-1的区域与真实的分类边界区域重合。那么,观察下Sigmoid的曲线趋势可以满足我们对这个问题的一切期望,它的概率变化会集中在一个边界区域,有助于模型提升边界区域的分辨率。
图5:使用sigmoid拟合输出可提高分类模型对边界的分辨率
这就类似于公共区域使用的带有恒温装置的热水器温度阀门,如 图6 所示。由于人体适应的水温在34度-42度之间,我们更期望阀门的水温条件集中在这个区域,而不是在0-100度之间线性分布。
图6:热水器水温控制
交叉熵
在模型输出为分类标签的概率时,直接以标签和概率做比较也不够合理,人们更习惯使用交叉熵误差作为分类问题的损失衡量。
交叉熵损失函数的设计是基于最大似然思想:最大概率得到观察结果的假设是真的。如何理解呢?举个例子来说,如 图7 所示。有两个外形相同的盒子,甲盒中有99个白球,1个蓝球;乙盒中有99个蓝球,1个白球。一次试验取出了一个蓝球,请问这个球应该是从哪个盒子中取出的?
图7:体会最大似然的思想
相信大家简单思考后均会得出更可能是从乙盒中取出的,因为从乙盒中取出一个蓝球的概率更高 ( P ( D ∣ h ) ) (P(D|h)) (P(D∣h)),所以观察到一个蓝球更可能是从乙盒中取出的 ( P ( h ∣ D ) ) (P(h|D)) (P(h∣D))。 D D D是观测的数据,即蓝球白球; h h h是模型,即甲盒乙盒。这就是贝叶斯公式所表达的思想:
P ( h ∣ D ) ∝ P ( h ) ⋅ P ( D ∣ h ) P(h|D) ∝ P(h) \cdot P(D|h) P(h∣D)∝P(h)⋅P(D∣h)
依据贝叶斯公式,某二分类模型“生成” n n n个训练样本的概率:
P ( x 1 ) ⋅ S ( w T x 1 ) ⋅ P ( x 2 ) ⋅ ( 1 − S ( w T x 2 ) ) ⋅ … ⋅ P ( x n ) ⋅ S ( w T x n ) P(x_1)\cdot S(w^{T}x_1)\cdot P(x_2)\cdot(1-S(w^{T}x_2))\cdot … \cdot P(x_n)\cdot S(w^{T}x_n) P(x1)⋅S(wTx1)⋅P(x2)⋅(1−S(wTx2))⋅…⋅P(xn)⋅S(wTxn)
说明:
对于二分类问题,模型为 S ( w T x i ) S(w^{T}x_i) S(wTxi), S S S为Sigmoid函数。当 y i y_i yi=1,概率为 S ( w T x i ) S(w^{T}x_i) S(wTxi);当 y i y_i yi=0,概率为 1 − S ( w T x i ) 1-S(w^{T}x_i) 1−S(wTxi)。
经过公式推导,使得上述概率最大等价于最小化交叉熵,得到交叉熵的损失函数。交叉熵的公式如下:
L = − [ ∑ k = 1 n t k log y k + ( 1 − t k ) log ( 1 − y k ) ] L = -[\sum_{k=1}^{n} t_k\log y_k +(1- t_k)\log(1-y_k)] L=−[k=1∑ntklogyk+(1−tk)log(1−yk)]
其中, log \log log表示以 e e e为底数的自然对数。 y k y_k yk代表模型输出, t k t_k tk代表各个标签。 t k t_k tk中只有正确解的标签为1,其余均为0(one-hot表示)。
因此,交叉熵只计算对应着“正确解”标签的输出的自然对数。比如,假设正确标签的索引是“2”,与之对应的神经网络的输出是0.6,则交叉熵误差是 − log 0.6 = 0.51 −\log 0.6 = 0.51 −log0.6=0.51;若“2”对应的输出是0.1,则交叉熵误差为 − log 0.1 = 2.30 −\log 0.1 = 2.30 −log0.1=2.30。由此可见,交叉熵误差的值是由正确标签所对应的输出结果决定的。
自然对数的函数曲线可由如下代码实现。
?jtplot.style()
Object `jtplot.style()` not found.
from jupyterthemes import jtplot
jtplot.style(ticks=True,grid=False, theme='onedork') #选择一个绘图主题
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0.01,1,0.01)
y = np.log(x)
plt.title("y=log(x)")
plt.xlabel("x")
plt.ylabel("y")
plt.plot(x,y)
plt.show()
plt.figure()
)]
<Figure size 460.8x403.2 with 0 Axes>
<Figure size 460.8x403.2 with 0 Axes>
如自然对数的图形所示,当 x x x等于1时, y y y为0;随着 x x x向0靠近, y y y逐渐变小。因此,“正确解”标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果“正确解”标签对应的输出越小,则交叉熵的值越大。
交叉熵的代码实现
在手写数字识别任务中,仅改动三行代码,就可以将在现有模型的损失函数替换成交叉熵(cross_entropy)。
- 在读取数据部分,将标签的类型设置成
int
,体现它是一个标签而不是实数值(飞桨默认将标签处理成“int64”)。 - 在网络定义部分,将输出层改成“输出十个标签的概率”的模式。
- 在训练过程部分,将损失函数从均方误差换成交叉熵。
在数据处理部分,需要修改标签变量Label的格式,代码如下所示。
- 从:label = np.reshape(labels[i], [1]).astype(‘float32’)
- 到:label = np.reshape(labels[i], [1]).astype(‘int64’)
#修改标签数据的格式,从float32到int64
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
from PIL import Image
import gzip
import json
# 定义数据集读取器
def load_data(mode='train'):
# 数据文件
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
data = json.load(gzip.open(datafile))
train_set, val_set, eval_set = data
# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
IMG_ROWS = 28
IMG_COLS = 28
if mode == 'train':
imgs = train_set[0]
labels = train_set[1]
elif mode == 'valid':
imgs = val_set[0]
labels = val_set[1]
elif mode == 'eval':
imgs = eval_set[0]
labels = eval_set[1]
imgs_length = len(imgs)
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(
len(imgs), len(labels))
index_list = list(range(imgs_length))
# 读入数据时用到的batchsize
BATCHSIZE = 100
# 定义数据生成器
def data_generator():
if mode == 'train':
random.shuffle(index_list)
imgs_list = []
labels_list = []
for i in index_list:
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('int64')
imgs_list.append(img)
labels_list.append(label)
if len(imgs_list) == BATCHSIZE:
yield np.array(imgs_list), np.array(labels_list)
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator
在网络定义部分,需要修改输出层结构,代码如下所示。
- 从:self.fc = Linear(input_dim=980, output_dim=1, act=None)
- 到:self.fc = Linear(input_dim=980, output_dim=10, act=‘softmax’)
# 定义模型结构
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义一个卷积层,使用relu激活函数
self.conv1 = Conv2D(num_channels=1, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个卷积层,使用relu激活函数
self.conv2 = Conv2D(num_channels=20, num_filters=20, filter_size=5, stride=1, padding=2, act='relu')
# 定义一个池化层,池化核为2,步长为2,使用最大池化方式
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 定义一个全连接层,输出节点数为10
self.fc = Linear(input_dim=980, output_dim=10, act='softmax')
# 定义网络的前向计算过程
def forward(self, inputs):
x = self.conv1(inputs)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = fluid.layers.reshape(x, [x.shape[0], 980])
x = self.fc(x)
return x
修改计算损失的函数,从均方误差(常用于回归问题)到交叉熵误差(常用于分类问题),代码如下所示。
- 从:loss = fluid.layers.square_error_cost(predict, label)
- 到:loss = fluid.layers.cross_entropy(predict, label)
#仅修改计算损失的函数,从均方误差(常用于回归问题)到交叉熵误差(常用于分类问题)
with fluid.dygraph.guard():
model = MNIST()
model.train()
#调用加载数据的函数
train_loader = load_data('train')
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
EPOCH_NUM = 5
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据,变得更加简洁
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
#前向计算的过程
predict = model(image)
#计算损失,使用交叉熵损失函数,取一个批次样本损失的平均值
loss = fluid.layers.cross_entropy(predict, label)
avg_loss = fluid.layers.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
#保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
loading mnist dataset from ./work/mnist.json.gz ......
epoch: 0, batch: 0, loss is: [2.3634984]
epoch: 0, batch: 200, loss is: [0.38027003]
epoch: 0, batch: 400, loss is: [0.30602008]
epoch: 1, batch: 0, loss is: [0.1570825]
epoch: 1, batch: 200, loss is: [0.24927774]
epoch: 1, batch: 400, loss is: [0.28396288]
epoch: 2, batch: 0, loss is: [0.11362638]
epoch: 2, batch: 200, loss is: [0.24342634]
epoch: 2, batch: 400, loss is: [0.10399125]
epoch: 3, batch: 0, loss is: [0.15782693]
epoch: 3, batch: 200, loss is: [0.20173627]
epoch: 3, batch: 400, loss is: [0.18618341]
epoch: 4, batch: 0, loss is: [0.13703655]
epoch: 4, batch: 200, loss is: [0.11431722]
epoch: 4, batch: 400, loss is: [0.09789195]
虽然上述训练过程的损失明显比使用均方误差算法要小,但因为损失函数量纲的变化,我们无法从比较两个不同的Loss得出谁更加优秀。怎么解决这个问题呢?我们可以回归到问题的本质,谁的分类准确率更高来判断。在后面介绍完计算准确率和作图的内容后,读者可以自行测试采用不同损失函数下,模型准确率的高低。
至此,大家阅读论文中常见的一些分类任务模型图就清晰明了,如全连接神经网络、卷积神经网络,在模型的最后阶段,都是使用Softmax进行处理。
图8:常见的分类任务模型图
由于我们修改了模型的输出格式,因此使用模型做预测时的代码也需要做相应的调整。从模型输出10个标签的概率中选择最大的,将其标签编号输出。
# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
# 从img_path中读取图像,并转为灰度图
im = Image.open(img_path).convert('L')
im.show()
im = im.resize((28, 28), Image.ANTIALIAS)
im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
# 图像归一化
im = 1.0 - im / 255.
return im
# 定义预测过程
with fluid.dygraph.guard():
model = MNIST()
params_file_path = 'mnist'
img_path = './work/example_0.jpg'
# 加载模型参数
model_dict, _ = fluid.load_dygraph("mnist")
model.load_dict(model_dict)
model.eval()
tensor_img = load_image(img_path)
#模型反馈10个分类标签的对应概率
results = model(fluid.dygraph.to_variable(tensor_img))
#取概率最大的标签作为预测输出
lab = np.argsort(results.numpy())
print("本次预测的数字是: ", lab[0][-1])
本次预测的数字是: 0