- 博客(30)
- 收藏
- 关注
原创 【SLAM】Ubuntu20.04安装ROS及实时运行ORB-SLAM2
ROS安装及实时运行ORB-SLAM2 1 ROS安装(1)设置网络时间协议(2)添加ROS软件源——添加代码列表及设置公钥(3)更新软件包索引(4)初始化rosdep(5)安装rosinstall(6)加载环境配置2 Usb_cam安装(1)下载usb_cam源码并配置环境(2)编译usb_cam(3)测试usb摄像头3 相机标定(1)准备黑白棋盘格(2)安装相机校准软件包1 ROS安装(1)设置网络时间协议设置NTP,使服务器和PC的时间误差最小。$ sudo apt-get install
2021-01-23 11:34:41 10882 22
原创 【Python】Python学习(十一)错误与异常
深度学习DAY 11 - Python入门(十一)Chapter 1 Python入门1.10 错误与异常1.10.1Chapter 1 Python入门1.10 错误与异常1.10.1====================================================================Python学习的内容参考《Python编程:从入门到实践》-[美] Eric Matthes《21天学通PYTHON》莫烦Python廖雪峰的Python教程等..
2021-01-23 11:32:07 870 2
转载 【SLAM】添加并使用ORBvoc.bin加速词典读取ORB-SLAM2
ORB-SLAM的作者对词典读取进行了改进,详见:https://github.com/raulmur/ORB_SLAM2/pull/21/files(1)CMakeLists.txt在98行加入Examples/Monocular/mono_kitti.cc)target_link_libraries(mono_kitti ${PROJECT_NAME})# Build toolsset(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}
2020-10-20 17:47:57 2810 3
原创 【SLAM】运行ORB-SLAM2并使用evo工具评估TUM/KITTI/EuRoC单目数据集
单目下运行ORB-SLAM2并使用evo工具评估TUM/KITTI/EuRoC数据集1 算法评价指标(1)系统性能评估-绝对轨迹误差(ATE)(2)系统漂移评估-相对轨迹误差(RPE)(3)精度统计量-均方根误差(RMSE)2 安装依赖项(1)Numpy安装(2)SciPy安装(3)matplotlib安装3 evo安装(1)pip安装(2)源码安装(3)测试(4)报错处理4 evo使用(1)轨迹可视化(2)轨迹评估1)计算绝对位姿误差2)计算相对位姿误差(3)结果比较(4)格式转换(5)配置更改(6)时间
2020-10-19 21:34:28 15852 20
原创 【SLAM】ubuntu16.04及ubuntu20.04编译ORB-SLAM3及运行EuRoC数据集
ORB-SLAM3安装及无ROS下运行RGB-D实例1 源码下载2 编译安装3 数据集测试各种库的下载安装(Pangolin、Opencv、 Eigen 3安装)与ORB-SLAM2相同。详见:1 源码下载https://github.com/UZ-SLAMLab/ORB_SLAM32 编译安装3 数据集测试...
2020-10-11 23:10:55 7200 24
原创 【SLAM】ubuntu16.04编译ORB-SLAM2及运行RGB-D实例
ORB-SLAM2安装及无ROS下运行RGB-D实例0 准备工作1 安装Pangolin(1)安装必要的依赖项(2)从github下载项目(3)编译安装3 安装OpenCV(1)安装依赖项1)安装编译工具2)安装依赖包3)安装可选包(2)下载OpenCV 2.4.13.6(3) 编译安装(4) 配置OpenCV环境变量1)将opencv的库加入到路径2)使配置生效(5)测试实例4 安装Eigen3(1) 安装Eigen库(2) 寻找Eigen3头文件(3) 调用Eigen库5 安装g2o和DBoW2的依赖项
2020-09-20 11:16:20 3095
原创 【Python】Python学习(十)常用语法形式:迭代器、生成器和装饰器
深度学习DAY 10 - Python入门(十)Chapter 1 Python入门1.9 生成器、迭代器和装饰器1.9.13)迭代器4)生成器Chapter 1 Python入门1.9 生成器、迭代器和装饰器1.9.13)迭代器for语法实际上实现设计模式中的迭代器模式,也可以按照要求生成迭代器对象,便于在for语句中使用。函数学习部分具体将在后文提及。例:只要类中实现了__iter__ 和 next函数,那么对象就可以在 for 语句中使用。 现在创建 Fibonacci 迭代器对象:
2020-09-16 16:02:13 251
原创 【深度学习】【PaddlePaddle】DAY 7 - Week1课程集中答疑
深度学习课程 DAY 7 - Week1课程集中答疑(1)训练集 、测试集、验证集的区别和联系.
2020-09-07 20:55:29 258
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(八)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(八)Chapter 3 图像分类问题3.9 模型保存和恢复训练(1)模型加载(2)恢复训练Chapter 3 图像分类问题3.9 模型保存和恢复训练(1)模型加载在之前的章节已经向读者介绍了将训练好的模型保存到磁盘文件的方法。应用程序可以随时加载模型,完成预测任务。但是在日常训练工作中,我们会遇到一些突发情况,导致训练过程主动或被动的中断。如果训练一个模型需要花费几天的时间,中断后从初始状态重新训练是不可接受的。从上一次保存状态开始继续训
2020-09-04 17:31:04 335 2
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(七)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(六)Chapter 3 图像分类问题3.7 模型优化之训练调试(1)概述(2)计算模型的分类准确率(3)检查模型训练过程,识别潜在训练问题(4)加入校验或测试,更好评价模型效果(5)加入正则化项,避免模型过拟合1)过拟合现象2)过拟合的表现3)过拟合的成因与防控4)正则化项(6)可视化分析1)Matplotlib库-绘制曲线图2)VisualDL-可视化分析Chapter 3 图像分类问题3.7 模型优化之训练调试(1)概述上一节我们研究
2020-09-01 20:25:52 700
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(六)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(六)Chapter 3 图像分类问题3.7 模型优化之资源配置(1)概述(2)单GPU训练(3)分布式训练1)模型并行2)数据并行① PRC通信方式② NCLL2通信方式(Collective)Chapter 3 图像分类问题3.7 模型优化之资源配置(1)概述从前几节的训练看,无论是房价预测任务还是MNIST手写字数字识别任务,训练好一个模型不会超过十分钟,主要原因是我们所使用的神经网络比较简单。但实际应用时,常会遇到更加复杂的机器学习
2020-09-01 20:24:29 612
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(五)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(四)Chapter 3 图像分类问题3.6 模型优化之优化算法(1)概述(2)设置学习率(3)学习率的主流优化算法Chapter 3 图像分类问题3.6 模型优化之优化算法(1)概述上一节明确了分类任务的损失函数(优化目标)的相关概念和实现方法,本节我们依旧横向展开"横纵式"教学法,如图所示,本节主要探讨在手写数字识别任务中,使得损失达到最小的参数取值的实现方法。前提条件:在优化算法之前,需要进行数据处理、设计神经网络结构,代码与上一
2020-09-01 20:24:10 448
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(四)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(四)Chapter 3 图像分类问题3.5 模型优化之损失函数(1)概述(2)分类任务的损失函数1)Softmax函数2)交叉熵3)交叉熵的代码实现Chapter 3 图像分类问题3.5 模型优化之损失函数(1)概述上一节尝试通过更复杂的模型(经典的全连接神经网络和卷积神经网络),提升手写数字识别模型训练的准确性。本节探讨损失函数的优化对模型训练效果的影响。损失函数是模型优化的目标,用于在众多的参数取值中,识别最理想的取值。损失函数的计
2020-09-01 20:23:49 1083
原创 【深度学习】【PaddlePaddle】DAY 6 - 图像分类问题:手写数字识别案例(三)
深度学习课程 DAY 6 - 图像分类问题:手写数字识别案例(三)Chapter 3 图像分类问题3.4 模型优化之网络结构Chapter 3 图像分类问题3.4 模型优化之网络结构
2020-09-01 20:23:26 521 2
原创 【深度学习】【PaddlePaddle】DAY 4 - 图像分类问题:手写数字识别案例(一)
深度学习课程 DAY 3 - 图像分类问题:手写数字识别案例Chapter 2 图像分类问题1 手写数字识别任务(1)数字识别概述(2)MNIST数据集2 构建手写数字识别任务的神经网络模型1)数据处理Chapter 2 图像分类问题1 手写数字识别任务(1)数字识别概述数字识别是计算机从纸质文档、照片或其他来源接收、理解并识别可读的数字的能力,目前比较受关注的是手写数字识别。手写数字识别是一个典型的图像分类问题,已经被广泛应用于汇款单号识别、手写邮政编码识别等领域,大大缩短了业务处理时间,提升了工
2020-08-25 16:23:00 1956
原创 【深度学习】【PaddlePaddle】DAY 3 - 构建神经网络模型(二)
深度学习课程 DAY 3 - 构建神经网络模型(二)Chapter 2 构建神经网络模型2.2 代码实现-构建神经网络模型(4)训练过程1)梯度下降法2)计算梯度3)使用Numpy进行梯度计算4)确定损失函数更小的点5)代码封装Train函数6)训练扩展到全部参数(5)模型保存Chapter 2 构建神经网络模型2.2 代码实现-构建神经网络模型(4)训练过程上述计算过程描述了如何构建神经网络,通过神经网络完成预测值和损失函数的计算。接下来介绍如何求解参数w和b的数值,这个过程也称为模型训练过程。训
2020-08-23 18:35:39 1541 3
原创 【深度学习】【PaddlePaddle】DAY 2 - 构建神经网络模型(一)
深度学习课程 DAY 2 - 零基础入门深度学习Chapter 1 零基础入门深度学习3 构建神经网络模型(1)问题阐述和定性分析(2)线性回归模型(模型假设和评价函数)(3)神经网络模型(优化算法)(4)构建预测任务的神经网络模型1)数据处理① 读入数据② 数据形状变换③ 数据集划分④ 数据归一化处理⑤ 封装为load data函数2)模型设计3)训练配置4)训练过程5)模型保存Chapter 1 零基础入门深度学习3 构建神经网络模型上一节我们初步认识了神经网络的基本概念(如神经元、多层连接、前向
2020-08-21 16:03:27 1311
原创 【深度学习】【PaddlePaddle】DAY 2 - 深度学习入门
深度学习课程 DAY 2 - 零基础入门深度学习Chapter 1 零基础入门深度学习1 前言(1)学习路径(2)课程准备(3)课程特色2 机器学习与深度学习综述(1)人工智能、机器学习、深度学习的关系(2)机器学习1)机器学习的实现2)机器学习的方法论2.1 概念定义和关系2.2 深度学习历史3 构建神经网络模型Chapter 1 零基础入门深度学习1 前言(1)学习路径该深度学习教程提供的基本学习路径。通过原理和代码结合、案例和作业结合进行学习。(2)课程准备知识储备:Python编程、机
2020-08-12 23:50:19 677
原创 【深度学习】【PaddlePaddle】Ubuntu16.04的NVIDIA显卡驱动、CUDA9和cuDNN安装(排雷躲坑必备)
1 准备工作1.1 查询本机信息(1)GPU信息
2020-08-09 22:13:00 1019
原创 【Python】 Python学习(九)程序组织:模块和包
深度学习DAY 9 - Python入门(九)Chapter 1 Python入门1.8 模块1.8.1Chapter 1 Python入门1.8 模块1.8.1====================================================================Python学习的内容参考《Python编程:从入门到实践》-[美] Eric Matthes《21天学通PYTHON》莫烦Python廖雪峰的Python教程等...
2020-08-02 23:30:57 722
原创 【Python】Python学习(八)面向对象编程
深度学习DAY 8 - Python入门(八)Chapter 1 Python入门1.7 面向对象编程1.7.1Chapter 1 Python入门1.7 面向对象编程1.7.1====================================================================Python学习的内容参考《Python编程:从入门到实践》-[美] Eric Matthes《21天学通PYTHON》莫烦Python廖雪峰的Python教程等...
2020-07-27 20:08:02 225
原创 【Python】Python学习(七)函数式编程
深度学习DAY 6 - Python入门(六)Chapter 1 Python入门1.5 函数1.5.1 定义函数Chapter 1 Python入门1.5 函数1.5.1 定义函数====================================================================Python学习的内容参考《Python编程:从入门到实践》-[美] Eric Matthes《21天学通PYTHON》莫烦Python廖雪峰的Python教程等...
2020-07-23 16:03:59 660
原创 【Python】Python学习(六)函数
深度学习DAY 6 - Python入门(六)Chapter 1 Python入门1.5 函数1.5.1 定义和声明函数1.5.2 传递参数(1)Chapter 1 Python入门1.5 函数1.5.1 定义和声明函数*def 定义函数,包括函数名、参数和功能实现代码,若有返回值,则在逻辑代码中用return返回。结构 def function_name(parameters): expressions例def function(): print('This is
2020-07-05 23:23:22 1370
原创 【Python】Python学习(五)Python控制语句(循环和判断)
深度学习DAY 3 - Python入门(五)Chapter 1 Python入门1.4 Python控制语句1.4.1 while和for循环(1)while循环(2)for循环1.4.2 if判断Chapter 1 Python入门1.4 Python控制语句1.4.1 while和for循环(1)while循环满足一个condition时,执行while循环结构:while condition: #判断条件,True或False expressions #True则执行语句
2020-07-01 00:09:48 370
原创 【Python】Python学习(四)Python运算符
深度学习DAY 3 - Python入门(三)Chapter 1 Python入门1.3 Python语法基础1.3.5 Python运算符(1)逻辑运算符1)and (与)2)or (或)3)not (非)Chapter 1 Python入门1.3 Python语法基础1.3.5 Python运算符(1)逻辑运算符逻辑型数据:True和False逻辑False:False、Nono、0、’’(空字符串)、()(空元组)、[](空列表)、{}(空字典)等。其余任何值为真。1)and (与)
2020-06-27 12:52:30 193
原创 【Python】Python学习(三)Python数据结构(列表、元组、字典、集合)
Chapter 1 Python入门1.3 Python语法基础(4)数组列表根据索引,按照0, 1, 2, . . .的顺序存储值a = [1, 2, 3, 4, 5] # 生成列表print(a) # 输出列表的内容len(a) # 获取列表的长度a[0] # 访问第一个元素的值,索引由0开始a[4] = 99 # 赋值Python提供slicing切片标记,可访问子列表a[0:2] # 获取索引为0到2(不包括2!)的元素[1, 2]a[1:] # 获
2020-06-26 12:23:30 547
原创 【Python】Python学习(二)Python语法基础(组织形式、输入输出、数学计算)
深度学习DAY 2 - Python入门(二)Chapter 1 Python入门1.3 Python语法基础1.3.1 组织形式(1)缩进分层(2)代码注释(3)断行1.3.2 输入输出(1)Input()输入(2)Print()输出1)print字符串2)print字符串叠加2)print简单运算1.3.3 简单数学计算、数据类型和变量(1)简单数学计算(2)数据类型1)str 字符串2) int 整型3) float 浮点型(3)标志符与赋值号1) 标志符2) 赋值号“=”(4)变量Chapter
2020-06-23 23:44:08 642
原创 【Python】Python学习(一)Python安装
深度学习DAY 1 - Python入门(一)前言Chapter 1 Python入门1.1 Python是什么1.2 Python的安装(1)下载Anoconda(2)安装(3)修改环境变量前言由于论文需要用到深度学习的内容,为了快速学习,以 《深度学习入门:基于 Python 的理论与实现》- [日] 斋藤康毅 为学习资料进行入门学习。Mon 22Mon 29Mon 06Mon 13Mon 20一、Python入门 二、感知机 三、神经网络
2020-06-23 20:47:13 180
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人