/*
题目描述
N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)
输入描述:
输入包括一个整数N,(1<=N<90)。
输出描述:
可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。
输入例子:
4
输出例子:
5
解法:
一次可以走两阶或一阶,
N = 1的时候只有一种方法。
N = 2的时候有两种方法。
N = K的时候,可以先走到k-1那里,然后向前走一阶,或者先走到k-2那里然后前走两阶,所以后一个答案是前两个的答案之和。
到第N阶楼梯的方式为F(N)=F(N-1)+F(N-2).
题目描述
N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)
输入描述:
输入包括一个整数N,(1<=N<90)。
输出描述:
可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。
输入例子:
4
输出例子:
5
解法:
一次可以走两阶或一阶,
N = 1的时候只有一种方法。
N = 2的时候有两种方法。
N = K的时候,可以先走到k-1那里,然后向前走一阶,或者先走到k-2那里然后前走两阶,所以后一个答案是前两个的答案之和。
到第N阶楼梯的方式为F(N)=F(N-1)+F(N-2).
* */
package com.ldp;
import java.util.Scanner;
public class Fibonacci {
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
while(sc.hasNext())
{
int n=sc.nextInt();
if(n>=1&&n<90)
{
//long out=fibonacci(n);
//System.out.println(out);
long out2=fibonacci2(n);
System.out.println(out2);
}
}
}
//非递归解法
public static long fibonacci(int n)
{
long[] arr=new long[n+1];
arr[1]=1;
arr[2]=2;
for(int i=3;i<=n;i++)
{
arr[i]=arr[i-1]+arr[i-2];
}
return arr[n];
}
//递归解法,太慢了。。。
public static long fibonacci2(int n)
{
if(n==1)
return 1;
else if(n==2)
return 2;
else
{
return fibonacci2(n-1)+fibonacci2(n-2);
}
}
}