自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(124)
  • 资源 (3)
  • 收藏
  • 关注

原创 continous attractor neural networks - 连续吸引子网络(ing)

continous attractor neural networks - 连续吸引子网络。处理视觉信号的网络是经典的CNN卷积神经网络,属于人工神经网络ANN家族。 然而故事还没有结束, 在CNN的下面, 有一个主管视觉追踪的CANN网络, 虽然只有一个字母之差, 这可不是卷积神经网络, 这四个字母的含义是continous attractor neural networks - 连续吸引子网络。所谓空间吸引子, 说的是一种特化了的循环神经网络, 网络的动力学导致一系列可以根据外界信号连续变化的吸引子

2020-12-27 22:01:40 39 1

原创 【Meta-Learning】元学习综述 :A Survey of Deep Meta-Learning (ing)

文章目录原文: https://arxiv.org/pdf/2010.03522.pdf

2020-12-27 21:56:59 18

原创 Uber Thomas 论文整理

Thomas MiconiWorkingNeural networks with differentiable structure虽然梯度下降在学习神经网络的连接权值方面已经被证明是非常成功的,但是这些网络的实际结构通常是由人工或其他优化算法来确定的。这里我们描述了一个简单的方法,使网络结构可微,从而可以得到梯度下降。我们在应用于简单序列预测问题的递归神经网络上测试了这种方法。从只包含一个节点的初始网络开始,该方法自动构建成功解决任务的网络。最终网络中的节点数与任务难度有关。该方法可以动态地增加网络规

2020-12-24 15:00:53 56

原创 【Meta-Learning】元学习综述 Meta-Learning in Neural Networks: A Survey (ing)

文章目录参考资料元学习是什么元学习的研究现状元学习有哪些方法参考资料论文原文: https://arxiv.org/pdf/2004.05439.pdf现有翻译: https://blog.csdn.net/qq_38680752/article/details/106488508论文集合: https://github.com/floodsung/Meta-Learning-Papers元学习是什么参考资料 :元学习(Meta-learning)——李宏毅老师教学视频笔记 - 郑思座的文章 -

2020-12-18 22:25:44 62

原创 Differentiable plasticity: training plastic neural networks withbackpropagation

http://proceedings.mlr.press/v80/miconi18a/miconi18a.pdf文章目录AbstractIntroductionRelated workintroAbstract1、 通过梯度下降 优化可微塑性2、 在测试集合中, 训练集中从未见过的自然图像集合, 能重建。3、 可以解决一般的元学习任务。IntroductionMany of the recent spectacular successes in machine learn-ing invol

2020-12-18 22:11:28 17

原创 SNN ANN 多模态融合 神经网络发展过程的两个分支

人工神经网络ANN和脉冲神经网络SNN, 所谓的ANN和SNN, 事实上是神经网络发展过程的两个分支。 欲了解其背景先了解其历史。作者:许铁-巡洋舰科技链接:https://www.zhihu.com/question/338090715/answer/772503438来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。神经网络的故事从模拟单个神经元开始: 神经元是神经网络信息传输的“原子”。通过一定的方法连接这些原子,就可以得到具有智能的系统, 这算是整个人工智能“连

2020-12-18 21:57:11 132 1

原创 OTB100报错: resize.cpp:4045: error: (-215:Assertion failed) !ssize.empty() in function ‘resize‘

SiamMask - otb100 0%| | 0/99 [00:00<?, ?it/s]/home/yuuzh/.conda/envs/pytorch-env/lib/python3.7/site-packages/torch/nn/functional.py:2796: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead. warnings.wa

2020-11-29 20:28:10 112

原创 笔试学习资料

UML六种依赖关系https://blog.csdn.net/u011402896/article/details/79315769数据库常用的三种模型https://blog.csdn.net/weixin_44116816/article/details/89923325数据库中的常用的数据模型 层次模型 网状模型 关系模型i>k?i:k缓冲池https://blog.csdn.net/qq_43279637/article/details/85098847TCP常用网络和木马使用

2020-10-14 15:04:49 98

原创 四轴飞行器的设计与开发过程

文章目录一、系统组成模块1、上位机 (PC)2、遥控器系统3、飞行器机体系统3.1 接收遥控器无线数据, 并发送飞行数据到遥控器无线通信模块 Nordic NRF24L013.2 采集传感器数据并进行姿态解算(1)陀螺仪 (角速度)(2)加速度计 (测量载体与重力加速度的角度)(3)磁力计 (测量载体与地磁场的绝对夹角)3.3 依据姿态信息解算各个电机的控制量并发送到电机驱动设备3.4 协调各个功能部件的逻辑运行二、硬件设备及作用1、电源2、传感器2.1 ICM20602 六轴传感器芯片2.2 磁力计传

2020-09-30 14:10:14 414

原创 笔试】 EOS

输入两个链表,找出它们的第一个公共结点https://blog.csdn.net/Ananbei/article/details/80589360USB 四种传输方式详解https://blog.csdn.net/shenjin_s/article/details/86229307单链表实现队列的基本操作(入队,出队)https://blog.csdn.net/qq_32070219/article/details/97298974C语言中变长数组void 指针ARM处理器7种工作模式ht

2020-09-24 20:07:29 92

原创 深度学习-面试

sharon:卷积核(滤波器)为什么都是奇数https://blog.csdn.net/qq_26598445/article/details/81285120sharon:卷积神经网络的卷积核的数量取多大合适?https://www.zhihu.com/question/65012947sharon:正则化方法:标签平滑https://blog.csdn.net/qwer7512090/article/details/100700261sharon:梯度消失、爆炸的解决方案https

2020-09-24 19:54:33 120

原创 [PN]一种可以减少频繁的视觉刺激对结果的贡献, 增加不频繁出现的视觉刺激对结果的贡献的方法 (PN)

Power Normalizing Second-order Similarity Network for Few-shot Learning

2020-09-10 21:13:09 107

原创 CUDA out of memory. (解决了)

报错Traceback (most recent call last): File "plastic_train.py", line 243, in <module> y, hebb = plasticnet.module(Variable(inputs[numstep], requires_grad=False), y, hebb) File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py"

2020-08-28 19:24:59 150

原创 [我的实验] 服务器 - 使用指南(end)

文章目录新建任务DockerUbuntu installtest运行交互式容器启动容器Docker 容器使用容器使用获取镜像启动容器查看所有的容器命令如下:使用 docker start 启动一个已停止的容器:后台运行停止一个容器自定义容器push 到服务器上环境配置在容器下运行本地项目一些报错上传到服务器多GPUSSHdebug解决方法[way 1](https://blog.csdn.net/qq_19598705/article/details/80396325)way 2PCB1、 新建一个job

2020-08-27 22:24:51 114

原创 【论文阅读笔记】Ocean: 目标感知的Anchor-free实时跟踪器,速度70+FPS!刚开源(更新中)

https://mp.weixin.qq.com/s/vLO8xgSooM3aHWEeZS1RrQOcean:目标感知的Anchor-free实时跟踪器,表现SOTA!性能优于SiamRPN++、DiMP等网络,速度可高达70+ FPS!论文链接:https://arxiv.org/pdf/2006.10721.pdf代码刚刚开源!https://github.com/researchmm/TracKit作者团队:中科院&微软文章目录摘要摘要...

2020-08-23 10:49:24 265

原创 【17】 强化学习 17章 前沿技术

文章目录名词离轨策略折扣过程折扣系数价值函数广义策略迭代(4.6节)或者“行动器一评判器”算法正文17.1 广义价值函数和辅助任务1、广义价值函数是什么?2、辅助任务是什么?定义: 预测和控制不同种类的信号特征作用17.2、基于选项理论的时序摘要人类可以无缝地在各个时间层次上切换,而没有一点转换的痕迹。那么MDP框架可不可以被拉伸,从而同步地覆盖所有这些时间层次呢?17.3 观测量和状态17.4 设计收益信号5 遗留问题6、参考文献 历史评注名词离轨策略允许函数以任意的目标策略作为条件折扣过程12

2020-08-12 22:27:53 141 1

原创 【RPN】前世今生 阅读笔记

input 慢在串行输入原图中均分为多个网格, 每个网格, 生成不同尺寸和比例的anchor 。生成的anchor 送入 RPN 网络 , 用于前景和背景的二分类回归, 对anchor 执行一个 置信度排序, 筛选掉一部分 。筛选后的anchor 送入网络 , 继续进行 回归和 置信度 。回归分支的作用??框是怎么产生的呢?loss ?原图映射到 feature mapRoI Pooling 映射到featureMask RCNN 出来了RoI Alig...

2020-08-11 17:38:23 63

原创 [EUG2] code笔记 :

文章目录一、代码结构二、代码(执行步骤)1、run.sh 、 run.py参数main1、初始化 label_data unlabeled_data2、 EUG 参数初始化3、 EUG 更新 训练 迭代过程EUG1、 train2、评估dataset4、伪标签估计一、代码结构二、代码(执行步骤)1、run.sh 、 run.py参数EF?init ?fea ?resume ???mainlog 为什么要用 EF ?total_step = ?EF 是啥?datase

2020-08-10 22:21:51 71

原创 【强化学习】 有限马尔可夫决策过程ing

文章目录智能体-环境 交互接口目标和收益3、分幂 和持续性任务的统一表示4、 侧拉和价值韩素智能体-环境 交互接口状态转移概率状态动作 二元组的期望收益时间不长目标和收益3、分幂 和持续性任务的统一表示4、 侧拉和价值韩素...

2020-08-10 10:25:42 55 1

原创 Pytorch :如何把print的参数存起来?

1、python 将print输出的内容保存到txt文件中import sysimport os class Logger(object): def __init__(self, filename="Default.log"): self.terminal = sys.stdout self.log = open(filename, "a") def write(self, message): self.terminal.write

2020-08-09 16:42:40 226

原创 报告记录 -【强化学习】 多臂赌博机 (不全)

是什么?怎么解决?概念开发试探基本变量基本解决思路应用 : 图片推荐系统EE 开发与试探 和冷启动开发: 推荐狗试探: 推荐猫冷启动 : ????Qn 的增量描述Qn+1 写成了非平稳情况最近的奖赏比前面的奖赏更重要使用固定步长常见的赌博机算法朴素Epsilon-Greedy改进: 随着步数增加 逐渐 减少thetaOptimistic Initial Value尽可能让每个摇臂都被尝试几次, 从而避免收敛到局部最优早期的奖励 和后期的奖励, 越来越大。U

2020-08-08 15:56:33 63 2

原创 报告记录-【强化学习】导论 (不全)

文章目录强化学习是什么问题马尔科夫决策过程状态收益部分可观测马尔科夫决策过程VS 监督学习、 无监督学习特点要素应用实例问题 井字棋强化学习方法:状态-价值表 (状态 + 获胜概率)选择动作更新价值强化学习早期历史1、 试错学习效应定律 1911快乐痛苦系统 1948minsky , 1960 , Steps toward AI自动学习机2、 最优控制理论动态规划马尔可夫决策过程 是动态规划的离散随机自适应动态规划 、Q学习算法3、 时序差分学习心理学的规律 可以应用过来 Minsky时序差分思想的跳

2020-08-08 15:36:41 53

原创 深度学习: Epoch 是什么?

文章目录神经网络的训练梯度下降法Epochbatchsizeiterations神经网络的训练梯度下降法学习率: 步长更大= 学习率更高误差函数不断减小。如果训练数据过多, 无法一次性将所有数据送入计算。现将数据分成几个部分: batch分多个 batch , 逐一送入计算训练Epoch一个epoch , 表示: 所有的数据送入网络中, 完成了一次前向计算 + 反向传播的过程。由于一个epoch 常常太大, 分成 几个小的 baches .将所有数据迭代训练一次是不够的, 需要

2020-08-07 21:08:23 924

原创 [UpdateNet]代码阅读笔记 : create_template.py

文章目录importbasenetclass SiamRPN(nn.Module)1、网络结构init2、反向传播3、SiamRPNBIG,SiamRPNVOT1、 super(SiamRPNBIG, self).__init__(size=2) 是什么?2、为什么SiamRPNBIG VOT OTB , 都引入了 SiamRPN 做参数 ,它的确有详细的网络结构。net_updtracker_updutils_updimportbasenetclass SiamRPN(nn.Module)1、网

2020-08-07 20:25:47 146

原创 [UpdateNet]代码阅读笔记 :tracker_upd.py 模板更新方式 (core )

init , 使用 输入图像, 第一framework 的目标从, 和 tracker 初始化, 这里的net 指的是 siameseRPN 。track ,跟踪过程中 , 使用上一个frame的 state + 下一个frame 的图片, 使用当前 updatenet 模型 , 预测下一个frame的state .信息都包含在 state 里面 。initconfig : tracker 的超参数分别是什么意义呀???? instance_size 是啥?? 输入size .

2020-08-06 22:45:39 146 1

原创 72.编辑距离 :给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

我的思路:1、 先比较两个字符的数量 ,计算相差的数量2、 字符匹配, 循序匹配两个字符中最长字符串数量len§。3、 最少操作数 = | len(1) - len(2) |+ len(2) - len§word 1 = a []word 2 = b []构造矩阵, m = len(a) , n = len (b) A mnaibjfor i in len(a)for j in len (b )if a(i) = b(j) , Aij = 1? 如何把一个矩阵 转化成 单.

2020-08-06 20:09:28 147

原创 sh 里面 import cv2 不成功 , 但是 pycharm 里面可以run

sh 脚本 需要设置 bash环境变量全局变量sh 是在系统上运行的exprot 一下控制台要注意环境设置。python 的全局变量opencv 的全局变量没有在命令行一定是这个原因查找 opencv2 import cv2 不行解决办法:激活conda虚拟环境后打开!!~~~...

2020-08-06 15:50:27 42

原创 【论文筛选ing】RNN ways

参考文献Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking2016Project Page:http://guanghan.info/projects/ROLO/GitHub:https://github.com/wangxiao5791509/ROLO摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪。我们通过深度神经网络来学习到 locations 的历

2020-08-06 14:42:51 29

原创 【ReID based video 】2017 AMOC: accumulative motion context : 有监督

AMOC: Hao Liu, Zequn Jie, Karlekar Jayashree, Meibin Qi, Jianguo Jiang, Shuicheng Yan, Jiashi Feng. Video based person re-identification with accumulative motion context[J]. arXiv preprint arXiv:1701.00193,2017.没有开源。。基于累计运动内容的ReID相关文献[10][10] uses a

2020-08-06 10:20:53 77

原创 【ing 】CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)DNN指的是包含多个隐层的神经网络,如图1所示,根据神经元的特点,可以分为MLP、CNNs、RNNs等,下文在区分三者的时候,都从神经元的角度来讲解。MLP是最朴素的DNN,CNNs是encode了空间相关性的DNN,RNNs是encode进了时间相关性的DNN。CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用ML

2020-08-06 09:25:59 63

原创 Vehicle Re-Identification 调研 and数据集(未)

多层前馈结构从大规模数据集学习层次特征,在图像分类识别任务中取得了出色的性能。目前基于 CNN 的车辆识别研究中,在采用端到端模式的识别方法在性能上达到一个瓶颈时,通常会采用 2 种方案提升性能:一种是结合浅层学习知识和深度特征完成分类识别;另一种是将相关的领域知识和浅层学习技术融入到深度网络中,构建一个新的端到端网络结构,从而提升图像分类的精度。数据集车辆识别常用公共数据集Stanford-Cars [51]、CompCar [66]、Vehicle Color [18]Stanford-Ca.

2020-08-06 09:09:25 146

原创 LeedCode 刷题笔记 70: 斐波那契数列 : 爬楼梯 : 排列组合问题转化

题目假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?斐波那契数列以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1,F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年

2020-08-05 20:25:08 109

原创 【MOT 多目标跟踪 综述 】(更新中)

运动目标跟踪(MOT)子系统(也称为多目标检测与跟踪-DATMO)负责检测和跟踪自动驾驶汽车周围环境中运动障碍物的姿态。该子系统对于使自主车辆做出决策和避免与潜在移动物体(如其他车辆和行人)碰撞至关重要。随着时间的推移,移动障碍物的位置通常是根据测距传感器(如激光雷达和雷达)或立体相机捕获的数据来估计的。单目摄像机的图像能够提供丰富的视觉信息,可以用来改进运动障碍假设。针对传感器测量的不确定性,采用Bayes滤波器(如Kalman和粒子滤波器)进行状态预测。MOT方法主要分为六类:传统的、基于模型的、

2020-08-05 12:56:54 674 2

原创 【候选调研领域清单 】(填坑List )

文章目录高精定位地图SLAM车道线检测路径规划飞行集群复杂控制集群编队控制技术集群自愈合控制技术集群任务规划技术感知方向视觉测量非接触测量位姿测量视觉测距视觉着陆图像目标检测/跟踪视觉导航 VIO 视觉惯性里程计 等 不依赖GPS的视觉导航技术SLAM :基于激光雷达、 可见光、 IMU 的多传感器融合及常见场景构建技术无中心自组网通信自组织协同链路 : 适应快时变信道环境的物理层宽带通信算法、大规模节点分簇组网络路由协议高可靠性无人系统链路技术 : 自适应调频、快速路由简历方法、 切换测量值机器学习方向大

2020-08-05 11:16:07 39

原创 【自动驾驶产业流程调研】(更新中)从招聘需求,观察自动驾驶领域行业概貌,及自动驾驶公司运作流程。

文章目录一、 首先查看各个岗位要求感知研发(融合预测)感知深度学习方向路径规划与决策控制算法高精地图研发仿真研发行为预测 与 轨迹预测机器学习基础设施搭建前端研发后端研发软件研发工程师-嵌入式软件研发工程师- 自动驾驶系统软件研发工程师 - 基础架构地图识别 提取二、各个岗位之间的关系三、汽车如何自动上路第一步、感知这个世界 (我是谁?)1、多传感器信息融合 (多种感官)1)视觉2) LiDAR2、目标识别 (目标检测)1)行人识别2) 车辆识别3) 其他物体及环境检测3、轨迹预测 (目标跟踪)1) 单目

2020-08-05 10:31:56 333

原创 【多传感器融合】 综述 (待更新)

具体来讲,多传感器数据融合原理如下:(1)多个不同类型传感器(有源或无源)收集观测目标的数据;(2)对传感器的输出数据(离散或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;(3)对特征矢量Yi进行模式识别处理(如聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等),完成各传感器关于目标的说明;(4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;(5)利用融合算法将目标的各传感器数据进行合成,

2020-08-05 10:30:46 102

原创 【论文筛选】ReID候选调研对象 2020-08-04 (ing)

文章目录目前存在的问题 ReID1、表征学习: 类内变化、类间模糊2、数据泛化:在一个数据集中学习的模型,在新数据集中表现不佳3、训练速度:Loss难样本采样三元组损失(Triplet loss with batch hard mining, TriHard loss): 距离最远的正样本距离越来越小, 距离最近的正样本距离越来越大论文: Alexander Hermans, Lucas Beyer, Bastian Leibe. In defense of the triplet loss for per

2020-08-04 14:39:47 105

原创 【Re-ID】现有方法调研 - 无监督/半监督方法 - 其他方法

文章目录问题是什么论文合集[1、OSNet : Learning Generalisable Omni-Scale Representations for Person Re-Identification (一种通用全尺度表示方法)](https://blog.csdn.net/NGUever15/article/details/102831979)解决 跨数据集准确性、 类内变化、类间模糊结构创新点1、动态尺度融合: 统一聚和门AG: 信道全职,分配权重聚焦不同尺度(全局、衣服、图案、鞋子)2、轻量级:

2020-08-04 14:39:19 174

原创 【Re-ID】评价指标、难点、基本流程、技术展望

0.研究的对象:人的整体特征,包括衣着、体形、发行、姿态等等1.技术难点:无正脸照,姿态,配饰,遮挡;拍色角度,图片模糊,室内外环境和光线变化,服装搭配,穿衣风格2.数据集:Market1501(清华),DukeMTMC-reID(Duke),CUHK03(香港中文)3.评价指标:Rank1:首位命中率mAP:平均精度均值,要求被检索人在底库中所有的图片都排在最前面,这时mAP 的指标才会高。4.基本流程:第一步,从摄像头的监控视频获得原始图片;第二步,基于这些原始图片把行人的位置检测

2020-08-04 10:18:15 134

原创 【Re-ID】现有方法调研 - 深度学习方法

目标跟踪基础与智能前沿 寻找 目标跟踪方向的小伙伴,如果你苦于没有地方可以和同方向的小伙伴交流,我们创建了一个交流群,点上方链接可以进入,每周的交流活动通过该号宣传,群里随时随地可以展开讨论,无论是学术交流,还是环境配置,实验讲解,欢迎加入我们,一起交流进步!点击上方链接,微信关注回复"数据集",获得目标跟踪几大经典数据集下载链接。文章目录[ 目标跟踪基础与智能前沿 ](http://dft2rci5611xwmix.mikecrm.com/NCyhs1B)参考学习资料一、ReID方法分类研究方法.

2020-08-03 22:37:04 93

tracker_benchmark_v1.0.zip

OTB 数据集工具包评测工具包tracker_benchmark_v1.0.zip

2020-09-11

Hadoop权威指南(第四版)

2017-03-08

数字图像处理 第三版 英文版 原版 高清版 PDF 非扫描版

数字图像处理 第三版 英文版 原版 高清版 PDF 非扫描版

2017-02-22

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除