一个图(Graph)G=(V,E)是由顶点集合(V)和边集合(E)组成;
边:图中的一条边用点对(a,b)表示;
图分为有向图和无向图;
有向图:即边(a,b)是有方向的,可以是a->b,也可以是b->a,这是两条不同的边;
无向图:即边(a,b)是无方向的,a->b和b->a是同一条边;
边权值:即指边上的权值属性,如果一个表示多个城市之间道路联通的图,那么两个城市之间的距离就可以作为边的权值属性;
路径:图中的路径是一个连续的顶点序列a1,a2,……,an,路径的长度为顶点个数N-1,即边的条数;
环:图中存在一个顶点到它自身的边(a,a);
简单路径:该路径上的所有顶点都是不同的,但最后一个顶点和第一个顶点可以相同;
圈:是一条路径,这条路需要满足:路径长度大于等于1,且路径上的第一个顶点和最后一个顶点是一样的,即a1=an;
无向连通图:无向图中,从每一个顶点到每个其他顶点都有一条路径,即每个顶点都可以到达图中其他人体顶点,则称该图为无向连通图;
有向强连通图:即图是有向的,又是连通的;
有向图的基础图:指的是有向图中,去掉每个边上的方向所构成的无向图就是有向图的基础图;
有向弱连通图:即有向图不是连通的,但其“基础图”是连通的,则称该有向图是弱连通的;
完全图:图中每一个顶点都有一条边;(注意和连通图的区别,“连通”只要是有路径到达就行,而完全图是每个顶点之间必须存在边);