目录
参考
1. 静态查找表(Static Search Table)
只做查找操作的查找表。它的主要操作是:
- 查询某个“特定的”数据元素是否在表中
- 检索某个“特定的”数据元素和各种属性
2. 动态查找表(Dynamic Search Table)
在查找中同时进行插入或删除等操作:
- 查找时插入数据
- 查找时删除数据
3. 顺序查找
3.1. 算法简介
顺序查找又称为线性查找,是一种最简单的查找方法。适用于线性表的顺序存储结构和链式存储结构。该算法的时间复杂度为O(n)。
3.2. 算法描述
从第一个元素m开始逐个与需要查找的元素x进行比较,当比较到元素值相同(即m=x)时返回元素m的下标,如果比较到最后都没有找到,则返回-1。
3.3. 代码实现
def sequential_search(lis, key):
length = len(lis)
for i in range(length):
if lis[i] == key:
return i
else:
return False
if __name__ == '__main__':
LIST = [1, 5, 8, 123, 22, 54, 7, 99, 300, 222]
result = sequential_search(LIST, 123)
print(result)
3.4. 算法分析
时间复杂度:O(n)
缺点:是当n 很大时,平均查找长度较大,效率低;
优点:是对表中数据元素的存储没有要求。另外,对于线性链表,只能进行顺序查找。
4、二分查找
4.1. 算法简介
二分查找(Binary Search),是一种在有序数组中查找某一特定元素的查找算法。查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则查找过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。
这种查找算法每一次比较都使查找范围缩小一半。
4.2. 算法描述
给予一个包含 n个带值元素的数组A
- 令 L为0 , R为 n-1 ;
- 如果L>R,则搜索以失败告终 ;
- 令 m (中间值元素)为 ⌊(L+R)/2⌋;
- 如果 Am<T,令 L为 m + 1 并回到步骤二 ;
- 如果 Am>T,令 R为 m - 1 并回到步骤二;
4.3. 代码实现
# 针对有序查找表的二分查找算法
def binary_search(lis, key):
low = 0
high = len(lis) - 1
time = 0
while low < high:
time += 1
mid = int((low + high) / 2)
if key < lis[mid]:
high = mid - 1
elif key > lis[mid]:
low = mid + 1
else:
# 打印折半的次数
print("times: %s" % time)
return mid
print("times: %s" % time)
return False
if __name__ == '__main__':
LIST = [1, 5, 7, 8, 22, 54, 99, 123, 200, 222, 444]
result = binary_search(LIST, 99)
print(result)
4.4. 算法分析
时间复杂度:折半搜索每次把搜索区域减少一半,时间复杂度为 O(logn)
空间复杂度:O(1)
5、插值查找
5.1. 算法简介
插值查找是根据要查找的关键字key与查找表中最大最小记录的关键字比较后的 查找方法,其核心就在于插值的计算公式 (key-a[low])/(a[high]-a[low])*(high-low)。
时间复杂度o(logn)但对于表长较大而关键字分布比较均匀的查找表来说,效率较高。
5.2. 算法描述
基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
注:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
5.3. 代码实现
# 插值查找算法
def binary_search(lis, key):
low = 0
high = len(lis) - 1
time = 0
while low < high:
time += 1
# 计算mid值是插值算法的核心代码
mid = low + int((high - low) * (key - lis[low])/(lis[high] - lis[low]))
print("mid=%s, low=%s, high=%s" % (mid, low, high))
if key < lis[mid]:
high = mid - 1
elif key > lis[mid]:
low = mid + 1
else:
# 打印查找的次数
print("times: %s" % time)
return mid
print("times: %s" % time)
return False
if __name__ == '__main__':
LIST = [1, 5, 7, 8, 22, 54, 99, 123, 200, 222, 444]
result = binary_search(LIST, 444)
print(result)
5.4. 算法分析
时间复杂性:如果元素均匀分布,则O(log log n)),在最坏的情况下可能需要 O(n)。
空间复杂度:O(1)。
6、斐波那契查找
6.1. 算法简介
斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、····,在数学上,斐波那契被递归方法如下定义:F(1)=1,F(2)=1,F(n)=f(n-1)+F(n-2) (n>=2)。该数列越往后相邻的两个数的比值越趋向于黄金比例值(0.618)。
6.2. 算法描述
斐波那契查找就是在二分查找的基础上根据斐波那契数列进行分割的。在斐波那契数列找一个等于略大于查找表中元素个数的数F[n],将原查找表扩展为长度为F[n](如果要补充元素,则补充重复最后一个元素,直到满足F[n]个元素),完成后进行斐波那契分割,即F[n]个元素分割为前半部分F[n-1]个元素,后半部分F[n-2]个元素,找出要查找的元素在那一部分并递归,直到找到。
6.3. 代码实现
# 斐波那契查找算法
# 时间复杂度O(log(n))
def fibonacci_search(lis, key):
# 需要一个现成的斐波那契列表。其最大元素的值必须超过查找表中元素个数的数值。
F = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368]
low = 0
high = len(lis) - 1
# 为了使得查找表满足斐波那契特性,在表的最后添加几个同样的值
# 这个值是原查找表的最后那个元素的值
# 添加的个数由F[k]-1-high决定
k = 0
while high > F[k]-1:
k += 1
print(k)
i = high
while F[k]-1 > i:
lis.append(lis[high])
i += 1
print(lis)
# 算法主逻辑。time用于展示循环的次数。
time = 0
while low <= high:
time += 1
# 为了防止F列表下标溢出,设置if和else
if k < 2:
mid = low
else:
mid = low + F[k-1]-1
print("low=%s, mid=%s, high=%s" % (low, mid, high))
if key < lis[mid]:
high = mid - 1
k -= 1
elif key > lis[mid]:
low = mid + 1
k -= 2
else:
if mid <= high:
# 打印查找的次数
print("times: %s" % time)
return mid
else:
print("times: %s" % time)
return high
print("times: %s" % time)
return False
if __name__ == '__main__':
LIST = [1, 5, 7, 8, 22, 54, 99, 123, 200, 222, 444]
result = fibonacci_search(LIST, 444)
print(result)
6.4. 算法分析
最坏情况下,时间复杂度为O(log2n),且其期望复杂度也为O(log2n)。
7、分块查找
7.1. 算法简介
要求是顺序表,分块查找又称索引顺序查找,它是顺序查找的一种改进方法。
将n个数据元素"按块有序"划分为m块(m ≤ n)。每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,以此类推。
7.2. 算法描述
- 先选取各块中的最大关键字构成一个索引表;
- 查找分两个部分:先对索引表进行二分查找或顺序查找,以确定待查记录在哪一块中;
- 在已确定的块中用顺序法进行查找。
7.3. 代码实现
7.4. 算法分析
时间复杂度:O(log(m)+N/m)
8、哈希查找
8.1. 算法简介
哈希表就是一种以键-值(key-indexed) 存储数据的结构,只要输入待查找的值即key,即可查找到其对应的值。
8.2. 算法描述
哈希的思路很简单,如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。
- 用给定的哈希函数构造哈希表;
- 根据选择的冲突处理方法解决地址冲突;
- 常见的解决冲突的方法:拉链法和线性探测法。
- 在哈希表的基础上执行哈希查找。
8.3. 代码实现
# 忽略了对数据类型,元素溢出等问题的判断。
class HashTable:
def __init__(self, size):
self.elem = [None for i in range(size)] # 使用list数据结构作为哈希表元素保存方法
self.count = size # 最大表长
def hash(self, key):
return key % self.count # 散列函数采用除留余数法
def insert_hash(self, key):
"""插入关键字到哈希表内"""
address = self.hash(key) # 求散列地址
while self.elem[address]: # 当前位置已经有数据了,发生冲突。
address = (address+1) % self.count # 线性探测下一地址是否可用
self.elem[address] = key # 没有冲突则直接保存。
def search_hash(self, key):
"""查找关键字,返回布尔值"""
star = address = self.hash(key)
while self.elem[address] != key:
address = (address + 1) % self.count
if not self.elem[address] or address == star: # 说明没找到或者循环到了开始的位置
return False
return True
if __name__ == '__main__':
list_a = [12, 67, 56, 16, 25, 37, 22, 29, 15, 47, 48, 34]
hash_table = HashTable(12)
for i in list_a:
hash_table.insert_hash(i)
for i in hash_table.elem:
if i:
print((i, hash_table.elem.index(i)), end=" ")
print("\n")
print(hash_table.search_hash(15))
print(hash_table.search_hash(33))
8.4. 算法分析
单纯论查找复杂度:对于无冲突的Hash表而言,查找复杂度为O(1)(注意,在查找之前我们需要构建相应的Hash表)。
9、树表查找
9.1. 二叉树查找
9.1.1 算法简介
二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
9.1.2 算法描述
二叉查找树(BinarySearch Tree)或者是一棵空树,或者是具有下列性质的二叉树:
- 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 任意节点的左、右子树也分别为二叉查找树。
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
9.1.3 代码实现
# 二叉树查找 Python实现
class BSTNode:
"""
定义一个二叉树节点类。
以讨论算法为主,忽略了一些诸如对数据类型进行判断的问题。
"""
def __init__(self, data, left=None, right=None):
"""
初始化
:param data: 节点储存的数据
:param left: 节点左子树
:param right: 节点右子树
"""
self.data = data
self.left = left
self.right = right
class BinarySortTree:
"""
基于BSTNode类的二叉查找树。维护一个根节点的指针。
"""
def __init__(self):
self._root = None
def is_empty(self):
return self._root is None
def search(self, key):
"""
关键码检索
:param key: 关键码
:return: 查询节点或None
"""
bt = self._root
while bt:
entry = bt.data
if key < entry:
bt = bt.left
elif key > entry:
bt = bt.right
else:
return entry
return None
def insert(self, key):
"""
插入操作
:param key:关键码
:return: 布尔值
"""
bt = self._root
if not bt:
self._root = BSTNode(key)
return
while True:
entry = bt.data
if key < entry:
if bt.left is None:
bt.left = BSTNode(key)
return
bt = bt.left
elif key > entry:
if bt.right is None:
bt.right = BSTNode(key)
return
bt = bt.right
else:
bt.data = key
return
def delete(self, key):
"""
二叉查找树最复杂的方法
:param key: 关键码
:return: 布尔值
"""
p, q = None, self._root # 维持p为q的父节点,用于后面的链接操作
if not q:
print("空树!")
return
while q and q.data != key:
p = q
if key < q.data:
q = q.left
else:
q = q.right
if not q: # 当树中没有关键码key时,结束退出。
return
# 上面已将找到了要删除的节点,用q引用。而p则是q的父节点或者None(q为根节点时)。
if not q.left:
if p is None:
self._root = q.right
elif q is p.left:
p.left = q.right
else:
p.right = q.right
return
# 查找节点q的左子树的最右节点,将q的右子树链接为该节点的右子树
# 该方法可能会增大树的深度,效率并不算高。可以设计其它的方法。
r = q.left
while r.right:
r = r.right
r.right = q.right
if p is None:
self._root = q.left
elif p.left is q:
p.left = q.left
else:
p.right = q.left
def __iter__(self):
"""
实现二叉树的中序遍历算法,
展示我们创建的二叉查找树.
直接使用python内置的列表作为一个栈。
:return: data
"""
stack = []
node = self._root
while node or stack:
while node:
stack.append(node)
node = node.left
node = stack.pop()
yield node.data
node = node.right
if __name__ == '__main__':
lis = [62, 58, 88, 48, 73, 99, 35, 51, 93, 29, 37, 49, 56, 36, 50]
bs_tree = BinarySortTree()
for i in range(len(lis)):
bs_tree.insert(lis[i])
# bs_tree.insert(100)
bs_tree.delete(58)
for i in bs_tree:
print(i, end=" ")
# print("\n", bs_tree.search(4))
9.1.4 算法分析
它和二分查找一样,插入和查找的时间复杂度均为O(logn),但是在最坏的情况下仍然会有O(n)的时间复杂度。原因在于插入和删除元素的时候,树没有保持平衡。
9.2. 平衡查找树之2-3查找树(2-3 Tree)
9.2.1 算法简介
和二叉树不一样,2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:
1)要么为空,要么:
2)对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。
3)对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。
9.2.2 算法描述
- 如果中序遍历2-3查找树,就可以得到排好序的序列;
- 在一个完全平衡的2-3查找树中,根节点到每一个为空节点的距离都相同。(这也是平衡树中“平衡”一词的概念,根节点到叶节点的最长距离对应于查找算法的最坏情况,而平衡树中根节点到叶节点的距离都一样,最坏情况也具有对数复杂度。)
9.2.3 代码实现
class Node(object):
def __init__(self,key):
self.key1=key
self.key2=None
self.left=None
self.middle=None
self.right=None
def isLeaf(self):
return self.left is None and self.middle is None and self.right is None
def isFull(self):
return self.key2 is not None
def hasKey(self,key):
if (self.key1==key) or (self.key2 is not None and self.key2==key):
return True
else:
return False
def getChild(self,key):
if key<self.key1:
return self.left
elif self.key2 is None:
return self.middle
elif key<self.key2:
return self.middle
else:
return self.right
class 2_3_Tree(object):
def __init__(self):
self.root=None
def get(self,key):
if self.root is None:
return None
else:
return self._get(self.root,key)
def _get(self,node,key):
if node is None:
return None
elif node.hasKey(key):
return node
else:
child=node.getChild(key)
return self._get(child,key)
def put(self,key):
if self.root is None:
self.root=Node(key)
else:
pKey,pRef=self._put(self.root,key)
if pKey is not None:
newnode=Node(pKey)
newnode.left=self.root
newnode.middle=pRef
self.root=newnode
def _put(self,node,key):
if node.hasKey(key):
return None,None
elif node.isLeaf():
return self._addtoNode(node,key,None)
else:
child=node.getChild(key)
pKey,pRef=self._put(child,key)
if pKey is None:
return None,None
else:
return self._addtoNode(node,pKey,pRef)
def _addtoNode(self,node,key,pRef):
if node.isFull():
return self._splitNode(node,key,pRef)
else:
if key<node.key1:
node.key2=node.key1
node.key1=key
if pRef is not None:
node.right=node.middle
node.middle=pRef
else:
node.key2=key
if pRef is not None:
node.right=Pref
return None,None
def _splitNode(self,node,key,pRef):
newnode=Node(None)
if key<node.key1:
pKey=node.key1
node.key1=key
newnode.key1=node.key2
if pRef is not None:
newnode.left=node.middle
newnode.middle=node.right
node.middle=pRef
elif key<node.key2:
pKey=key
newnode.key1=node.key2
if pRef is not None:
newnode.left=Pref
newnode.middle=node.right
else:
pKey=node.key2
newnode.key1=key
if pRef is not None:
newnode.left=node.right
newnode.middle=pRef
node.key2=None
return pKey,newnode
9.2.4 算法分析
2-3树的查找效率与树的高度是息息相关的。
距离来说,对于1百万个节点的2-3树,树的高度为12-20之间,对于10亿个节点的2-3树,树的高度为18-30之间。
插入来说,只需要常数次操作即可完成,因为他只需要修改与该节点关联的节点即可,不需要检查其他节点,所以效率和查找类似。
9.3. 平衡查找树之红黑树(Red-Black Tree)
9.3.1 算法简介
红黑树是一种具有红色和黑色链接的平衡查找树,同时满足:
- 红色节点向左倾斜 ;
- 一个节点不可能有两个红色链接;
- 整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同。
9.3.2 算法描述
整个树完全黑色平衡,即从根节点到所以叶子结点的路径上,黑色链接的个数都相同(2-3树的第2)性质,从根节点到叶子节点的距离都相等)。
9.3.3 代码实现
#红黑树
from random import randint
RED = 'red'
BLACK = 'black'
class RBT:
def __init__(self):
# self.items = []
self.root = None
self.zlist = []
def LEFT_ROTATE(self, x):
# x是一个RBTnode
y = x.right
if y is None:
# 右节点为空,不旋转
return
else:
beta = y.left
x.right = beta
if beta is not None:
beta.parent = x
p = x.parent
y.parent = p
if p is None:
# x原来是root
self.root = y
elif x == p.left:
p.left = y
else:
p.right = y
y.left = x
x.parent = y
def RIGHT_ROTATE(self, y):
# y是一个节点
x = y.left
if x is None:
# 右节点为空,不旋转
return
else:
beta = x.right
y.left = beta
if beta is not None:
beta.parent = y
p = y.parent
x.parent = p
if p is None:
# y原来是root
self.root = x
elif y == p.left:
p.left = x
else:
p.right = x
x.right = y
y.parent = x
def INSERT(self, val):
z = RBTnode(val)
y = None
x = self.root
while x is not None:
y = x
if z.val < x.val:
x = x.left
else:
x = x.right
z.PAINT(RED)
z.parent = y
if y is None:
# 插入z之前为空的RBT
self.root = z
self.INSERT_FIXUP(z)
return
if z.val < y.val:
y.left = z
else:
y.right = z
if y.color == RED:
# z的父节点y为红色,需要fixup。
# 如果z的父节点y为黑色,则不用调整
self.INSERT_FIXUP(z)
else:
return
def INSERT_FIXUP(self, z):
# case 1:z为root节点
if z.parent is None:
z.PAINT(BLACK)
self.root = z
return
# case 2:z的父节点为黑色
if z.parent.color == BLACK:
# 包括了z处于第二层的情况
# 这里感觉不必要啊。。似乎z.parent为黑色则不会进入fixup阶段
return
# 下面的几种情况,都是z.parent.color == RED:
# 节点y为z的uncle
p = z.parent
g = p.parent # g为x的grandpa
if g is None:
return
# return 这里不能return的。。。
if g.right == p:
y = g.left
else:
y = g.right
# case 3-0:z没有叔叔。即:y为NIL节点
# 注意,此时z的父节点一定是RED
if y == None:
if z == p.right and p == p.parent.left:
# 3-0-0:z为右儿子,且p为左儿子,则把p左旋
# 转化为3-0-1或3-0-2的情况
self.LEFT_ROTATE(p)
p, z = z, p
g = p.parent
elif z == p.left and p == p.parent.right:
self.RIGHT_ROTATE(p)
p, z = z, p
g.PAINT(RED)
p.PAINT(BLACK)
if p == g.left:
# 3-0-1:p为g的左儿子
self.RIGHT_ROTATE(g)
else:
# 3-0-2:p为g的右儿子
self.LEFT_ROTATE(g)
return
# case 3-1:z有黑叔
elif y.color == BLACK:
if p.right == z and p.parent.left == p:
# 3-1-0:z为右儿子,且p为左儿子,则左旋p
# 转化为3-1-1或3-1-2
self.LEFT_ROTATE(p)
p, z = z, p
elif p.left == z and p.parent.right == p:
self.RIGHT_ROTATE(p)
p, z = z, p
p = z.parent
g = p.parent
p.PAINT(BLACK)
g.PAINT(RED)
if p == g.left:
# 3-1-1:p为g的左儿子,则右旋g
self.RIGHT_ROTATE(g)
else:
# 3-1-2:p为g的右儿子,则左旋g
self.LEFT_ROTATE(g)
return
# case 3-2:z有红叔
# 则涂黑父和叔,涂红爷,g作为新的z,递归调用
else:
y.PAINT(BLACK)
p.PAINT(BLACK)
g.PAINT(RED)
new_z = g
self.INSERT_FIXUP(new_z)
def DELETE(self, val):
curNode = self.root
while curNode is not None:
if val < curNode.val:
curNode = curNode.left
elif val > curNode.val:
curNode = curNode.right
else:
# 找到了值为val的元素,正式开始删除
if curNode.left is None and curNode.right is None:
# case1:curNode为叶子节点:直接删除即可
if curNode == self.root:
self.root = None
else:
p = curNode.parent
if curNode == p.left:
p.left = None
else:
p.right = None
elif curNode.left is not None and curNode.right is not None:
sucNode = self.SUCCESOR(curNode)
curNode.val, sucNode.val = sucNode.val, curNode.val
self.DELETE(sucNode.val)
else:
p = curNode.parent
if curNode.left is None:
x = curNode.right
else:
x = curNode.left
if curNode == p.left:
p.left = x
else:
p.right = x
x.parent = p
if curNode.color == BLACK:
self.DELETE_FIXUP(x)
curNode = None
return False
def DELETE_FIXUP(self, x):
p = x.parent
# w:x的兄弟结点
if x == p.left:
w = x.right
else:
w = x.left
# case1:x的兄弟w是红色的
if w.color == RED:
p.PAINT(RED)
w.PAINT(BLACK)
if w == p.right:
self.LEFT_ROTATE(p)
else:
self.RIGHT_ROTATE(p)
if w.color == BLACK:
# case2:x的兄弟w是黑色的,而且w的两个孩子都是黑色的
if w.left.color == BLACK and w.right.color == BLACK:
w.PAINT(RED)
if p.color == BLACK:
return
else:
p.color = BLACK
self.DELETE_FIXUP(p)
# case3:x的兄弟w是黑色的,而且w的左儿子是红色的,右儿子是黑色的
if w.left.color == RED and w.color == BLACK:
w.left.PAINT(BLACK)
w.PAINT(RED)
self.RIGHT_ROTATE(w)
# case4:x的兄弟w是黑色的,而且w的右儿子是红
if w.right.color == RED:
p.PAINT(BLACK)
w.PAINT(RED)
if w == p.right:
self.LEFT_ROTATE(p)
else:
self.RIGHT_ROTATE(p)
def SHOW(self):
self.DISPLAY1(self.root)
return self.zlist
def DISPLAY1(self, node):
if node is None:
return
self.DISPLAY1(node.left)
self.zlist.append(node.val)
self.DISPLAY1(node.right)
def DISPLAY2(self, node):
if node is None:
return
self.DISPLAY2(node.left)
print(node.val)
self.DISPLAY2(node.right)
def DISPLAY3(self, node):
if node is None:
return
self.DISPLAY3(node.left)
self.DISPLAY3(node.right)
print(node.val)
class RBTnode:
'''红黑树的节点类型'''
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.parent = None
def PAINT(self, color):
self.color = color
def zuoxuan(b, c):
a = b.parent
a.left = c
c.parent = a
b.parent = c
c.left = b
if __name__ == '__main__':
rbt=RBT()
b = []
for i in range(100):
m = randint(0, 500)
rbt.INSERT(m)
b.append(m)
a = rbt.SHOW()
b.sort()
equal = True
for i in range(100):
if a[i] != b[i]:
equal = False
break
if not equal:
print('wrong')
else:
print('OK!')
9.3.4 算法分析
最坏的情况就是,红黑树中除了最左侧路径全部是由3-node节点组成,即红黑相间的路径长度是全黑路径长度的2倍。
9.4. B树和B+树(B Tree/B+ Tree)
9.4.1 算法简介
B 树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。
①根节点至少有两个子节点;
②每个节点有M-1个key,并且以升序排列;
③位于M-1和M key的子节点的值位于M-1 和M key对应的Value之间;
④非叶子结点的关键字个数=指向儿子的指针个数-1;
⑤非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] ;
⑥其它节点至少有M/2个子节点;
⑦所有叶子结点位于同一层;
9.4.2 算法描述
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;
9.4.3 代码实现
9.4.4 算法分析