[[EVD]] - 剑指 Offer 15. 二进制中1的个数

题目分析:[[EVD]] - 剑指 Offer 15. 二进制中1的个数https://leetcode-cn.com/problems/er-jin-zhi-zhong-1de-ge-shu-lcof/

简单描述:

  • 编写一个函数,**输入是一个无符号整数**(以二进制串的形式),返回其二进制表达式中数字位数为 '1' 的个数(也被称为 [汉明重量](http://en.wikipedia.org/wiki/Hamming_weight)).)。

限制🚫

  • 输入必须是长度为 32 的 **二进制串** 。
  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用 二进制补码 记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数 -3。

示例:

输入:n = 11 (控制台输入 00000000000000000000000000001011)
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。

输入:n = 128 (控制台输入 00000000000000000000000010000000)
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。

输入:n = 4294967293 (控制台输入 11111111111111111111111111111101,部分语言中 n = -3)
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。

解题思路:

思路:

  • #位运算
  • 1,逐位判断累加,题目输入是一个无符号整数,简单右移即可
  • 2.巧妙利用 n&(n-1) 会将最后一位1变为0

效率:

  • 空间复杂度O(1)
    • 1,逐位判断 时间复杂度O(logn)

    •  2.巧妙利用 时间复杂度O(m ) (⚠️:m指n的二进制串中1的个数)

代码:

  • 1,逐位判断
class Solution
{
public:
    int hammingWeight(uint32_t n)
    {
        int res = 0;
        while (n)
        {
            res += n & 1;
            n >>= 1;
        }
        return res;
    }
};
  • 2.巧妙利用
class Solution
{
public:
    /*巧妙利用 n&(n-1)*/
    int hammingWeight(uint32_t n)
    {
        int res = 0;
        while (n)
        {
            res ++;
            n = n & (n-1);
        }
        return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值