[[EVD]] - 剑指 Offer 59 - I. 滑动窗口的最大值

题目分析:[[EVD]] - 剑指 Offer 59 - I. 滑动窗口的最大值icon-default.png?t=M276https://leetcode-cn.com/problems/hua-dong-chuang-kou-de-zui-da-zhi-lcof/

简单描述:

  • 给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。

限制🚫

  • 你可以假设 k 总是有效的,在输入数组不为空的情况下,1 ≤ k ≤ 输入数组的大小。

示例:

输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7] 
解释: 

  滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

解题思路:

思路:

  • #滑动窗口 使用队列,维护最大值在队首的状态,可以使用 [[C++ STL]]中的 deque 或者 priority_queue

效率:

  • 时间复杂度O(n)
  • 空间复杂度O(k)

代码:

class Solution
{
public:
    /*利用双端队列实现单调队列,控制队首元素*/
    vector<int> maxSlidingWindow(vector<int> &nums, int k)
    {
        deque<int> dq;
        vector<int> res;
        if (nums.size() == 0 || k == 0) //可有可无,题目有限制
            return {};
        for (int i = 0 /*右边界*/, j = 1 - k /*左边界*/; i < nums.size(); i++, j++)
        {
            /*删除左边数*/
            if (j > 0 && dq.front() == nums[j - 1])
                dq.pop_front();
            
            /*删除队列中<当前添加数,并添加当前数*/
            while (!dq.empty() && dq.back() < nums[i])
                dq.pop_back();
            dq.push_back(nums[i]);

            /*形成窗口后开始填入数字*/
            if (j >= 0)
                res.push_back(dq.front());
        }
        return res;
    }
};

### 复现 FRLW-EvD 技术细节和实现方法 #### 了解背景和技术原理 为了成功复现FRLW-EvD(假设这是一个特定领域内的算法或模型),理解其背后的理论基础至关重要。这通常涉及深入研究原始论文以及任何后续改进工作,确保掌握所有必要的数学工具和概念[^1]。 #### 准备环境配置 建立合适的开发测试平台对于重现实验结果非常重要。选择适合的操作系统、编程语言版本,并安装所需的库和支持软件包。特别注意依赖项管理,保持与原作者使用的设置尽可能一致可以减少很多不必要的麻烦[^2]。 #### 获取数据集 如果该技术依赖于特定的数据源,则需获取相同或相似质量级别的公开可用替代品。仔细阅读文档来确认输入格式要求,预处理阶段可能还需要做一些额外的工作以匹配预期标准[^3]。 #### 编写代码实现核心功能 基于上述准备工作之后就可以着手编写具体实现了。以下是Python环境下简单示例框架: ```python import numpy as np from sklearn.model_selection import train_test_split def load_data(path): """加载并分割训练/验证集合""" data = ... # 加载实际数据逻辑 X_train, X_val, y_train, y_val = train_test_split(data['features'], data['labels']) return (X_train, y_train), (X_val, y_val) class FRWL_EVD_Model(): def __init__(self, param_a=0.5,param_b=1e-4): self.param_a = param_a self.param_b = param_b def fit(self,X,y): pass def predict(self,x_new): pass if __name__ == "__main__": dataset_path = "./datasets/" model_params = {"param_a":0.7,"param_b":1e-5} training_set,(validation_features, validation_labels)=load_data(dataset_path) frwl_model = FRWL_EVD_Model(**model_params) # 训练过程... ``` 此部分应根据具体的FRWL-EVD定义填充`fit()` 和 `predict()` 方法的具体内容[^4]。 #### 验证结果准确性 完成初步编码后,通过对比官方发布的指标或其他同行评审的研究成果来进行评估。调整超参数直至达到满意的性能水平;记录下每次迭代的变化情况以便日后回顾分析[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值