Leo的博客

一个科研小子的奋斗经历

人脸图像的预处理

预处理是人脸识别过程中的一个重要环节。输入图像由于图像采集环境的不同,如光照明暗程度以及设备性能的优劣等,往往存在有噪声,对比度不够等缺点。另外,距离远近,焦距大小等又使得人脸在整幅图像中间的大小和位置不确定。为了保证人脸图像中人脸大小,位置以及人脸图像质量的一致性,必须对图像进行预处理。 
        人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。归一化工作的目标是取得尺寸一致,灰度取值范围相同的标准化人脸图像。下面简单介绍一些预处理的方法。 
(1)直方图均衡 
        直方图是一种点操作,它逐点改变图像的灰度值,尽量使各个灰度级别都具有相同的数量的像素点,使直方图趋于平衡。直方图均衡可以使输入图像转换为在每一个灰度级上都有相同像素点数的输出图像(即输出的直方图是平的)。这对于图像比较或分割是十分有用的。 
        设图像有N个灰度级,M个像素点,ha(n)是输入图像a (x ,y)的直方图,图像b (x, y)是输入图像直方图均衡后的输出,依照下面的公式进行直方图均衡: 

  

(2)中值滤波

        无论是直接获取的灰度图像,还是由彩色图像转换得到的灰度图像,里面都有噪声的存在,噪声对图像质量有很大的影响。进行中值滤波不仅可以去除孤点噪声,而且可以保持图像的边缘特性,不会使图像产生显著的模糊,比较适合于实验中的人脸图像。

        中值滤波是一种非线性的信号处理方法,因此中值滤波器也就是一种非线性的滤波器。中值滤波器最先被应用于一维信号的处理中,后来被人们引用到二维图像的处理中来。中值滤波可以在一定程度上克服线性滤波所带来的图像细节模糊,而且它对滤除脉冲干扰和图像扫描噪声非常有效。

        中值滤波一般采用一个含有若干个点的滑动窗口,将窗口中各点灰度值的中值来代替指定点(一般是窗口的中心点)的灰度值。如果窗口中有奇数个元素,中值取元素按灰度值大小排序后的中间元素灰度值。如果窗口中有偶数个元素,中值取元素按灰度值大小排序后,中间两个元素灰度的平均值。因为图像为二维信号,中值滤波的窗口形状和尺寸对滤波器效果影响很大,不同图像内容和不同应用要求往往选用不同的窗口形状和尺寸。

(3)归一化

        人脸图像的归一化,目的是使不同成像条件(光照强度,方向,距离,姿势等)下拍摄的同一个人的照片具有一致性。人脸归一化包括两个方面的内容:一是几何归一化,二是灰度归一化。几何归一化也称为位置校准,它将有助于矫正因成像距离和人脸姿势变化造成的尺寸差异和角度倾斜。它的目的在于解决人脸尺度变化和人脸旋转问题。具体包括人脸尺度归一化,平面人脸旋转矫正(歪头),深度人脸旋转矫正(扭脸)三个环节。严格的深度人脸旋转矫正需要利用人脸的3D模型。灰度归一化用来对不同光强,光源方向下得到的人脸图像进行补偿。以减弱单纯由于光照变化造成的图像信号的变化

阅读更多
想对作者说点什么? 我来说一句

人脸图像预处理的matlab源程序

2008年11月13日 2KB 下载

人脸图像预处理相关代码

2013年09月17日 18.8MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭