深度学习之 人脸识别(1) 人脸预处理

本文介绍了深度学习中的人脸识别技术,重点讲解了MTCNN模型的原理和应用。MTCNN由P-Net、R-Net、O-Net三个网络构成,分别用于人脸检测、框精修和关键点定位。通过图像金字塔处理,适应不同尺寸的人脸检测,并详细阐述了每个网络的输出结构和损失函数。此外,还提供了开源代码链接用于人脸预处理实践。
摘要由CSDN通过智能技术生成



 人脸识别分两个部分:

 第一步:人脸图片预处理,即检测图片中人脸并裁剪成指定尺寸的人脸图。

 第二步:人脸识别,包括模型训练、目标人脸分类训练、 预测目标人脸。

1. 人脸检测原理


 人脸识别,首先得做人脸检测,也就是找到人脸在哪里,用矩形框框出位置。理想情况下,应该检测出图片中所有的人脸。

人脸检测模型:

 1、MTCNN (TensorFlow)

 2、SSD Face (Caffe)


 获得人脸的矩形框后,然后就要做人脸对齐(Face Alignment),因为原始图片中,人脸的姿态、位置可能有较大区别,

为了统一处理,要把人脸“摆正”。“摆正”的方法,其实就是先找到人脸的关键点,比如眼睛、鼻子、嘴巴、脸轮廓等。根据这些

关键点,使用仿射变换将人脸统一标准,尽量消除姿势不同带来的误差。


 这里采用基于TensorFlow的MTCNN(Multi-task convolutional neural networks) 模型。MTCNN是一种基于深度神经网络的

人脸检测和人脸对其的方法。MTCNN由3个神经网络构成,分别是P-Net,R-Net、O-Net。

 在使用上述网络之前,要对原始图片进行预处理,先将原始图片缩放到不同尺寸,形成一个“图像金字塔”,如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值