
《机器学习》(周志华) 第6章 支持向量 学习心得 笔记
支持向量机(Support Vector Machine,SVM)的主要目的就是在特征空间中找到距离正反例最远的分离超平面,由于是“最远”因此与上一章感知机里初值敏感,由误分类点修正最后得到的“初值敏感”的超平面不同,对于线性可分的(linearly separable)数据集,SVM确定的分离超平面是唯一的,超平面上的点可以用“平面”方程表示:wTx+b=0\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b=0wTx+b=0而任意样本x\boldsymbol{






















