ML--小小白
码龄10年
关注
提问 私信
  • 博客:66,011
    问答:151
    动态:65
    66,227
    总访问量
  • 50
    原创
  • 732,579
    排名
  • 102
    粉丝

个人简介:实验物理phd,可能毕业去业界。。。。。学了学当今时代的浪潮之巅——AI

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2015-03-27
博客简介:

qq_26928055的博客

查看详细资料
个人成就
  • 获得138次点赞
  • 内容获得31次评论
  • 获得388次收藏
  • 代码片获得1,796次分享
创作历程
  • 32篇
    2022年
  • 19篇
    2021年
成就勋章
TA的专栏
  • 机器学习(周志华)
    6篇
  • 计算机基础
    1篇
  • 统计学习方法笔记
    26篇
  • python使用
    5篇
  • CS229
    8篇
  • linux
    4篇
  • 深度学习
    1篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflownlp分类
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

请教合适的模型做回归

发布问题 2024.08.17 ·
27 回答

matplotlib画图中tick_params与autofmt_xdate两个函数作用为何失效?

发布问题 2022.10.12 ·
1 回答

《机器学习》(周志华) 第6章 支持向量 学习心得 笔记

支持向量机(Support Vector Machine,SVM)的主要目的就是在特征空间中找到距离正反例最远的分离超平面,由于是“最远”因此与上一章感知机里初值敏感,由误分类点修正最后得到的“初值敏感”的超平面不同,对于线性可分的(linearly separable)数据集,SVM确定的分离超平面是唯一的,超平面上的点可以用“平面”方程表示:wTx+b=0\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b=0wTx+b=0而任意样本x\boldsymbol{
原创
发布博客 2022.07.26 ·
1125 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

《机器学习》(周志华) 第5章 神经网络 学习心得 笔记

神经元(neuron,亦称unit)其实就是一个小型的分类器,其将从其他神经元输入的信息带权重连接进入,然后比较其与阈值的相对大小,并将差异通过激活函数(activationfunction),决定其是否被”激活“/”兴奋“。这种神经元的抽象模型1943年就被提出了,被两位提出者名字首字母命名为”M-P神经元模型“。最常使用的激活函数为Sigmoid(亦称squashing)函数。...
原创
发布博客 2022.07.22 ·
1659 阅读 ·
2 点赞 ·
2 评论 ·
11 收藏

《机器学习》(周志华) 第4章 决策树 学习心得 笔记

主要是一个递归过程。
原创
发布博客 2022.07.21 ·
677 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

《机器学习》(周志华) 第3章 线性模型 学习心得 笔记

线性模型是试图学习通过样本属性/特征的线性构成的假设函数的模型。f(x)=w1​x1​+w2​x2​+…+wd​xd​+bf(x)=wTx+b线性模型是机器学习中基础的模型,很多非线性模型无非是在线性模型基础上引入层级结构或者高维映射而得到。...
原创
发布博客 2022.07.17 ·
1027 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

《机器学习》(周志华)第2章 模型选择与评估 笔记 学习心得

误分类样本占总样本的比例正确分类样本数与总样本数的比;等于1减去第一行表示真实的正例,第二行表示真实的反例;第一列表示模型预测的正例,第二列表示模型预测的反例。真实正例,且被模型判为正例。混淆矩阵的元素。真实正例,但被模型误判为反例。混淆矩阵的元素。真实反例,但被模型误判为正例。混淆矩阵的元素。真实反例,且被模型判为反例。混淆矩阵的元素。以信息检索为例,就是“检索出的信息中有多少比例是用户真正感兴趣的”,或者说检索出的正例中,有多少是真正的正例。P=TPTP+FPP = \frac{TP}{TP +
原创
发布博客 2022.07.12 ·
708 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

《机器学习》(周志华)第一章 绪论 笔记 学习心得

由于我之前已经学过了李航老师的《统计学习方法(第2版)》,所以这里面的概念没有啥不懂得,不会像教程说的有些难,毕竟学过一部分了。而且,这本书确实比李航老师涵盖的可能更广些,从绪论可见一斑。其中的可以说拓展了我的知识面,之前只是认为,有了假设(模型),有了损失函数,去优化求的最小的损失就可以了,但是其实一直忽略了一个更重要的,更高一层的东西,假设空间里学习到的最终的模型,其实是有他自己的“偏好”的,只是恰好有些偏好的模型,更能够得到我们更好的训练以及范化结果。特别是,这里提到了NFL(No Free Lunc
原创
发布博客 2022.07.12 ·
431 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一张图学《计算机组成原理(硬件篇)》 思维导图 计算机组成

发布资源 2022.06.07 ·
png

一张图学《计算机组成原理(硬件篇)》 思维导图 计算机组成

通过学习哈工大刘宏伟老师的计算机组成原理(上)总结而来
原创
发布博客 2022.06.07 ·
1117 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

《统计学习方法(第2版)》李航 第22章 无监督学习方法总结 思维导图笔记

李航老师《统计学习方法(第二版)》完结篇,最终总结。
原创
发布博客 2022.06.07 ·
258 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

《统计学习方法(第2版)》李航 第21章 PageRank算法 思维导图笔记 及 课后全部习题答案

思维导图:假设方阵A是随机矩阵,即其每个元素非负,每列元素之和为1,证明AkA^{k}Ak仍然是随机矩阵,其中kkk是自然数。证明:将AAA左乘一个维度匹配的全1行向量1⃗\vec{1}1,由于AAA的每列和为1,很容易得到:1⃗A=1⃗\vec{1}A=\vec{1}1A=1对上式左右两边同时右乘AAA:1⃗AA=1⃗A=1⃗\vec{1}AA=\vec{1}A=\vec{1}1AA=1A=1继续右乘可以得到:1⃗AA⋯A=1⃗Ak=1⃗\vec{1}AA\cdots A=\vec
原创
发布博客 2022.06.06 ·
478 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

《统计学习方法(第2版)》李航 第20章 潜在狄利克雷分配 LDA Dirichlet 思维导图笔记 及 课后全部习题答案(步骤详细, 包含吉布斯抽样算法)狄利克雷分布期望推导

思维导图:推导狄利克雷分布数学期望公式。首先写出Dirichlet分布的概率密度函数:ρ(θ)=Γ(α0)Γ(α1)⋯P(αn)∏i=1nθiαi−1\rho(\theta)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots P\left(\alpha_{n}\right)} \prod_{i=1}^{n} \theta_{i}^{\alpha_{i}-1}ρ(θ)=Γ(α1​)⋯P(αn​)Γ(α0​
原创
发布博客 2022.06.02 ·
1193 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

IPython cheatsheet

1. 使用命令历史IPython 维护了一个小的磁盘数据库,包含执行的每条命令的文本。不同于notebook,其每个代码单元都会记录输入和输出。1.1 搜索和复用命令历史可以利用上下键,向上向下搜索已经执行的命令,可以键入部分开头的命令来搜索。# 演示在命令行的操作1 + 12%run /Users/hhh/Documents/CS/利用python进行数据分析/test.pyhello word!2 + 35# 命令行中,上翻是2+3,再上翻是%run。。。,可以先键入%
原创
发布博客 2022.05.28 ·
234 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Numpy cheatsheet

1. ndarray 对象内幕import numpy as npnp.ones((3, 4, 5), dtype=np.float64).strides(160, 40, 8)反映了在不同轴上遍历的步长,可见每个np.float64的长度是8Byte=64bit。跨度大的轴的计算代价更高。np.ones((3, 4, 5), dtype=np.float32).strides(80, 20, 4)np.ones((3, 4, 5), dtype=np.uint16).strides
原创
发布博客 2022.05.27 ·
433 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

macOS 可以使用Numba实现GPU加速运算吗?

发布问题 2022.05.27 ·
1 回答

《统计学习方法(第2版)》李航 第19章 马尔可夫蒙特卡罗法 MCMC 思维导图笔记 及 课后全部习题答案(步骤详细, 包含Metropolis算法,吉布斯算法代码实现)第十九章

思维导图:19.1用蒙特卡罗积分法求:∫−∞∞x2exp⁡(−x22)dx\int_{-\infty}^{\infty} x^{2} \exp \left(-\frac{x^{2}}{2}\right) d x∫−∞∞​x2exp(−2x2​)dx首先将被积函数分解为分布函数与待求期望的函数的乘积:KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲&\int_{-\inf
原创
发布博客 2022.05.26 ·
1442 阅读 ·
2 点赞 ·
3 评论 ·
15 收藏

《统计学习方法(第2版)》李航 第18章 概率潜在语义分析 PLSA PLSI 思维导图笔记 及 课后习题答案(步骤详细, 包含生成模型,共现模型算法推导及实现)第十八章

思维导图:18.1证明生成模型与共现模型是等价的。首先,注意到一个重要的假设,假设z给定的条件下,w与d相互是独立的,则:P(w,z∣d)=P(z∣d)P(w∣z,d)=P(z∣d)P(w∣z)P(w, z \mid d)=P(z \mid d) P(w \mid z, d)=P(z \mid d) P(w \mid z)P(w,z∣d)=P(z∣d)P(w∣z,d)=P(z∣d)P(w∣z)P(w,d∣z)=P(w∣d)P(d∣z)P(w, d \mid z)=P(w \mid d) P
原创
发布博客 2022.05.16 ·
708 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

Numpy数组广播规则记忆方法 array broadcast 广播原理 广播机制

本文重点在文字描述部分,代码看看就好,如果我的这种方法对您有点点帮助,麻烦点个小赞😄,如果有更好的方法,或发现我的错误,请不吝赐教🙏首先,其实数组与标量间的运算其实是一种先广播,后element-wise的运算import numpy as nparr = np.arange(5)arrarray([0, 1, 2, 3, 4])arr * 4array([ 0, 4, 8, 12, 16])广播的规则是每个末尾维度,轴长匹配或者长度是1,广播会在丢失的轴,比如(4, 3) +
原创
发布博客 2022.05.14 ·
655 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

《统计学习方法(第2版)》李航 第17章 潜在语义分析 LSA LSI 思维导图笔记 及 课后习题答案(步骤详细)第十七章

思维导图:17.1试将图17.1的例子进行潜在语义分析,并对结果进行观察。import numpy as npX = np.array([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 1, 0], [0, 0, 2, 3], [0, 0, 0, 1], [1, 2, 2, 1]])U, Sigma, VT = np.linalg
原创
发布博客 2022.05.14 ·
814 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏
加载更多