LeetCode 每日一题 690. 员工的重要性

690. 员工的重要性

给定一个保存员工信息的数据结构,它包含了员工 唯一的 id重要度直系下属的 id

比如,员工 1 是员工 2 的领导,员工 2 是员工 3 的领导。他们相应的重要度为 15 , 10 , 5 。那么员工 1 的数据结构是 [1, 15, [2]] ,员工 2的 数据结构是 [2, 10, [3]] ,员工 3 的数据结构是 [3, 5, []] 。注意虽然员工 3 也是员工 1 的一个下属,但是由于 并不是直系 下属,因此没有体现在员工 1 的数据结构中。

现在输入一个公司的所有员工信息,以及单个员工 id ,返回这个员工和他所有下属的重要度之和。

示例:

输入:[[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1
输出:11
解释:
员工 1 自身的重要度是 5 ,他有两个直系下属 23 ,而且 23 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11

提示:

  • 一个员工最多有一个 直系 领导,但是可以有多个 直系 下属
  • 员工数量不超过 2000 。

方法一:深度优先搜索

解题思路

  • 将员工信息放入 哈希表 中,以便以 O(1) 的时间复杂度获取员工信息。

  • 递归遍历员工的下属累加重要度即可。

参考代码

public int getImportance(List<Employee> employees, int id) {
    Map<Integer, Employee> map = new HashMap<>();
    for(Employee e : employees) {
        map.put(e.id, e);
    } 
    return dfs(map, id);
}

private int dfs(Map<Integer, Employee> map, int id) {
    Employee e = map.get(id);
    int importance = e.importance;
    for(int subId : e.subordinates) {
        importance += dfs(map, subId);
    }
    return importance;
}

执行结果
在这里插入图片描述

方法二:广度优先搜索

通常能用 dfs 的,也能使用 bfs。

参考代码

public int getImportance1(List<Employee> employees, int id) {
    Map<Integer, Employee> map = new HashMap<>();
    for (Employee e : employees) {
        map.put(e.id, e);
    }

    Queue<Integer> queue = new LinkedList<>();
    queue.offer(id);
    int sum = 0;
    while (!queue.isEmpty()) {
        Employee e = map.get(queue.poll());
        sum += e.importance;
        queue.addAll(e.subordinates);
    }
    return sum;
}

执行结果
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值