690. 员工的重要性
给定一个保存员工信息的数据结构,它包含了员工 唯一的 id ,重要度 和 直系下属的 id 。
比如,员工 1 是员工 2 的领导,员工 2 是员工 3 的领导。他们相应的重要度为 15 , 10 , 5 。那么员工 1 的数据结构是 [1, 15, [2]] ,员工 2的 数据结构是 [2, 10, [3]] ,员工 3 的数据结构是 [3, 5, []] 。注意虽然员工 3 也是员工 1 的一个下属,但是由于 并不是直系 下属,因此没有体现在员工 1 的数据结构中。
现在输入一个公司的所有员工信息,以及单个员工 id ,返回这个员工和他所有下属的重要度之和。
示例:
输入:[[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1
输出:11
解释:
员工 1 自身的重要度是 5 ,他有两个直系下属 2 和 3 ,而且 2 和 3 的重要度均为 3 。因此员工 1 的总重要度是 5 + 3 + 3 = 11 。
提示:
- 一个员工最多有一个 直系 领导,但是可以有多个 直系 下属
- 员工数量不超过 2000 。
方法一:深度优先搜索
解题思路
-
将员工信息放入 哈希表 中,以便以 O(1) 的时间复杂度获取员工信息。
-
递归遍历员工的下属累加重要度即可。
参考代码
public int getImportance(List<Employee> employees, int id) {
Map<Integer, Employee> map = new HashMap<>();
for(Employee e : employees) {
map.put(e.id, e);
}
return dfs(map, id);
}
private int dfs(Map<Integer, Employee> map, int id) {
Employee e = map.get(id);
int importance = e.importance;
for(int subId : e.subordinates) {
importance += dfs(map, subId);
}
return importance;
}
执行结果
方法二:广度优先搜索
通常能用 dfs 的,也能使用 bfs。
参考代码
public int getImportance1(List<Employee> employees, int id) {
Map<Integer, Employee> map = new HashMap<>();
for (Employee e : employees) {
map.put(e.id, e);
}
Queue<Integer> queue = new LinkedList<>();
queue.offer(id);
int sum = 0;
while (!queue.isEmpty()) {
Employee e = map.get(queue.poll());
sum += e.importance;
queue.addAll(e.subordinates);
}
return sum;
}
执行结果