专业知识
专业知识概念
qq_27047075
这个作者很懒,什么都没留下…
展开
-
数据挖掘一些概念
基本步骤:1 数据清理2 数据集成3 数据选择4 数据变换5 数据挖掘6 模式评估7 知识表示数据的属性有哪些:1 标称属性:可以说成是事物的名称 例如 头发的颜色:棕色,红色,褐色等2 二元属性:用 0或1 表示,又称布尔属性3 序数属性: 第一,第二,第三,A,B,C,D,等级之类的,序数之间没有明确的差值4 数值属性:有两种 (1).区间标度属...原创 2022-11-12 23:42:05 · 387 阅读 · 0 评论 -
struts2 项目格式
web.xml在webINF文件夹下,不是libHelloworldaction.javapackage cn;public class HelloWorldAction { private String name; public String execute() throws Exception { return "success"; } public String getName(){ return name; } public void setName(...原创 2020-05-10 08:48:49 · 159 阅读 · 0 评论 -
卷积神经网络——conv2d
# coding: utf-8# In[1]:import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,Sequentialfrom tensorflow.examples.tutorials.mnist import input_dataimport matp...原创 2020-04-19 19:19:10 · 431 阅读 · 0 评论 -
神经网络_tensorflow_keras实现
# coding: utf-8# In[54]:import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,Sequentialtf.__version__# In[55]:#第一层3个神经元#第二层两个神经元network=Sequential([...原创 2020-04-18 11:26:57 · 365 阅读 · 0 评论 -
神经网络_原理实现
import tensorflow as tfimport numpy as npdef relu(temp): return tf.maximum(temp,0)def softmax2(z): exp=tf.exp(z) sum=tf.reduce_sum(tf.exp(z),axis=1,keepdims=True)#在第二个维度上求和,并且保持维度不变 ...原创 2020-03-31 14:56:13 · 257 阅读 · 0 评论 -
感知机-简单实现
#感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型。import numpy as npimport matplotlib.pyplot as pltc0=np.random.normal(6,1,100)c1=np.random.normal(3,1,100)c2=np.random.normal(3...原创 2020-03-21 22:35:59 · 190 阅读 · 0 评论 -
softmax 手写数字识别
1.导入测试数据from sklearn.datasets import load_digitsimport numpy as npimport matplotlib.pyplot as pltdigits = load_digits()print(digits.data.shape)print(digits.target.shape)print(digits.images.sh...原创 2020-03-20 19:40:11 · 1214 阅读 · 0 评论 -
softmax 多分类
#生成四个簇import numpy as npimport matplotlib.pyplot as pltc0x=np.random.normal(2,1,100).reshape(100,1)c0y=np.random.normal(2,1,100).reshape(100,1)c1x=np.random.normal(-2,1,100).reshape(100,1)c1y=n...原创 2020-03-19 21:46:56 · 198 阅读 · 0 评论 -
梯度下降,小批量随机梯度下降
1 梯度下降import numpy as npimport matplotlib.pyplot as pltx=np.array(range(0,50))np.random.seed(1)y=6*xlabel_y=y+np.random.random(50)*10x=x.reshape(50,1)label_y=label_y.reshape(50,1)train_data...原创 2020-03-19 14:06:54 · 104 阅读 · 0 评论 -
逻辑回归模型
生成数据import numpy as npimport matplotlib.pyplot as pltc0=np.random.normal(6,1,100)c1=np.random.normal(3,1,100)c2=np.random.normal(3,1,100)c3=np.random.normal(6,1,100)c0y=np.zeros(100)c1y=np....原创 2020-03-17 23:27:21 · 207 阅读 · 0 评论 -
监督学习
训练集 Training setm训练的数量x输入特征 向量y预测值xi->yi预测函数h(x)=yhO(x)=O0+O1x模型名称:线性回归如何选择O0和O1来适应预测函数h从x和y的样本,使得O0,O1更接近样本数据所以求和(h(xi)-yi)^2最小值最小求最小的代价函数,与直线拟合先看一个特殊的只有O1O1取不同的值代价函数的变化代价函数但...原创 2020-02-03 00:21:56 · 163 阅读 · 0 评论 -
机器学习常用算法归纳小记
概念分类:监督学习,利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习 也就是线性回归得到直线的到每个点的代价的最小值无监督学习我们不知道数据集中数据、特征之间的关系,而是要根据聚类或一定的模型得到数据之间的关系就是分类问题,一些数据根据特征分类...原创 2020-02-03 00:22:55 · 111 阅读 · 0 评论 -
拉普拉斯矩阵——复杂链路预测
L=D-AA是一个图的矩阵表示A=[[0,1,0,0,1,0],[1,0,1,0,1,0],[0,1,0,1,0,0],[0,0,1,0,1,1],[1,1,0,1,0,0],[0,0,0,1,0,0]]D是矩阵每个节点的度[[2. 0. 0. 0. 0. 0.][0. 3. 0. 0. 0. 0.][0. 0. 2. 0. 0. 0.][0. 0. 0. 3. 0. 0....原创 2020-02-04 00:44:43 · 439 阅读 · 0 评论