机器学习算法代码
qq_27047075
这个作者很懒,什么都没留下…
展开
-
skipgram模型实现
Word2Vec模型中,主要有Skip-Gram和CBOW两种模型,从直观上理解,Skip-Gram是给定input word来预测上下文。而CBOW是给定上下文,来预测input word。原创 2022-11-12 23:39:06 · 423 阅读 · 0 评论 -
Tensorflow 简单自定义训练循环
Tensorflow简单二分类任务,自定义训练循环原创 2022-11-06 14:16:55 · 558 阅读 · 0 评论 -
yolov3 训练时如何配置工作环境
运行这个代码要安装一些包numpy == 1.17opencv-python >= 4.1torch >= 1.5matplotlibpycocotoolstqdmpillowtensorboard >= 1.141数据准备1.1 打标签使用labelimg 进行标签的生成,图片不要有中文路径和名称,打完标签时xml文件主要是执行这个软件的命令 python labelimg.py2 将图片放到JEPGimg文件夹下,images里也要一份3 将.原创 2020-07-19 16:47:15 · 293 阅读 · 0 评论 -
卷积神经网络——conv2d
# coding: utf-8# In[1]:import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,Sequentialfrom tensorflow.examples.tutorials.mnist import input_dataimport matp...原创 2020-04-19 19:19:10 · 431 阅读 · 0 评论 -
神经网络_tensorflow_keras实现
# coding: utf-8# In[54]:import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,Sequentialtf.__version__# In[55]:#第一层3个神经元#第二层两个神经元network=Sequential([...原创 2020-04-18 11:26:57 · 365 阅读 · 0 评论 -
神经网络_原理实现
import tensorflow as tfimport numpy as npdef relu(temp): return tf.maximum(temp,0)def softmax2(z): exp=tf.exp(z) sum=tf.reduce_sum(tf.exp(z),axis=1,keepdims=True)#在第二个维度上求和,并且保持维度不变 ...原创 2020-03-31 14:56:13 · 257 阅读 · 0 评论 -
感知机-简单实现
#感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型。import numpy as npimport matplotlib.pyplot as pltc0=np.random.normal(6,1,100)c1=np.random.normal(3,1,100)c2=np.random.normal(3...原创 2020-03-21 22:35:59 · 190 阅读 · 0 评论 -
softmax 手写数字识别
1.导入测试数据from sklearn.datasets import load_digitsimport numpy as npimport matplotlib.pyplot as pltdigits = load_digits()print(digits.data.shape)print(digits.target.shape)print(digits.images.sh...原创 2020-03-20 19:40:11 · 1214 阅读 · 0 评论 -
softmax 多分类
#生成四个簇import numpy as npimport matplotlib.pyplot as pltc0x=np.random.normal(2,1,100).reshape(100,1)c0y=np.random.normal(2,1,100).reshape(100,1)c1x=np.random.normal(-2,1,100).reshape(100,1)c1y=n...原创 2020-03-19 21:46:56 · 198 阅读 · 0 评论 -
k-means 代码
from sklearn.cluster import KMeanskmeans = KMeans(n_clusters = 3)kmeans.fit(x)y_kmeans = kmeans.predict(x)plt.scatter(x[:,0], x[:,1], c = y_kmeans, cmap='Dark2', s=50, alpha=0.5, marker='x')cen...原创 2020-03-19 14:07:33 · 111 阅读 · 0 评论 -
sklearn 数据预处理
数据可能是高纬度的,资料标准化后会使得每个特征中的数值平均变为0(将每个特征的值都减掉原始资料中该特征的平均),标准差变为1StandardScaler计算训练集的平均值和标准差,以便测试数据及使用相同的变换。 变换后各维特征有0均值,单位方差,也叫z-score规范化(零均值规范化),计算方式是将特征值减去均值,除以标准差。所有数减去其平均值的平方和,所得结果除以该组数...原创 2020-03-19 14:06:26 · 133 阅读 · 0 评论 -
梯度下降,小批量随机梯度下降
1 梯度下降import numpy as npimport matplotlib.pyplot as pltx=np.array(range(0,50))np.random.seed(1)y=6*xlabel_y=y+np.random.random(50)*10x=x.reshape(50,1)label_y=label_y.reshape(50,1)train_data...原创 2020-03-19 14:06:54 · 104 阅读 · 0 评论 -
逻辑回归模型
生成数据import numpy as npimport matplotlib.pyplot as pltc0=np.random.normal(6,1,100)c1=np.random.normal(3,1,100)c2=np.random.normal(3,1,100)c3=np.random.normal(6,1,100)c0y=np.zeros(100)c1y=np....原创 2020-03-17 23:27:21 · 207 阅读 · 0 评论 -
Skclearn 随机生成测试样本——聚类样本
from sklearn.datasets import make_blobsfrom matplotlib import pyplotdata,label = make_blobs(n_samples=1000,n_features=2,centers=5)# 绘制样本显示pyplot.scatter(data[:,0],data[:,1],c=label)pyplot.sho...原创 2020-03-15 14:38:30 · 257 阅读 · 0 评论 -
SKlearn 随机生成测试样本——分类样本
from sklearn.datasets.samples_generator import make_classificationX, y = make_classification(n_samples=200, n_features=4, n_informative=2, n_redundant=2, n_classes=2, n_clusters_per_class=2, sc...原创 2020-03-15 14:35:55 · 845 阅读 · 0 评论 -
Sklearn k-means
from sklearn.cluster import KMeanskmeans = KMeans(n_clusters = 3)kmeans.fit(x)y_kmeans = kmeans.predict(x)plt.scatter(x[:,0], x[:,1], c = y_kmeans, cmap=‘Dark2’, s=50, alpha=0.5, marker=‘x’)centr...原创 2020-03-11 19:27:35 · 243 阅读 · 0 评论 -
SKlearn-KNN
1 获得数据from sklearn import datasetsiris=datasets.load_iris()iris_x=iris.datairis_y=iris.target2 处理数据,数据分割成测试集和训练集from sklearn.model_selection import train_test_splitX_train,X_test,y_train,y...原创 2020-03-15 10:33:17 · 264 阅读 · 0 评论