给你一个非负整数数组 nums
和一个整数 k
。每次操作,你可以选择 nums
中 任一 元素并将它 增加 1
。
请你返回 至多 k
次操作后,能得到的 nums
的 最大乘积 。由于答案可能很大,请你将答案对 109 + 7
取余后返回。
示例 1:
输入:nums = [0,4], k = 5 输出:20 解释:将第一个数增加 5 次。 得到 nums = [5, 4] ,乘积为 5 * 4 = 20 。 可以证明 20 是能得到的最大乘积,所以我们返回 20 。 存在其他增加 nums 的方法,也能得到最大乘积。
示例 2:
输入:nums = [6,3,3,2], k = 2 输出:216 解释:将第二个数增加 1 次,将第四个数增加 1 次。 得到 nums = [6, 4, 3, 3] ,乘积为 6 * 4 * 3 * 3 = 216 。 可以证明 216 是能得到的最大乘积,所以我们返回 216 。 存在其他增加 nums 的方法,也能得到最大乘积。
提示:
1 <= nums.length, k <= 105
0 <= nums[i] <= 106
C++
class Solution {
public:
int maximumProduct(vector<int>& nums, int k) {
priority_queue<int,vector<int>,greater<int>> que;
for(auto num:nums) {
que.push(num);
}
while(k) {
int num=que.top();
que.pop();
num++;
que.push(num);
k--;
}
long res=1;
int mod=1000000007;
while(!que.empty()) {
res=((long)res*(long)que.top())%mod;
que.pop();
}
return res;
}
};
java
class Solution {
public int maximumProduct(int[] nums, int k) {
PriorityQueue<Integer> que = new PriorityQueue<>();
for (int num : nums) {
que.add(num);
}
while (k > 0) {
int num = que.poll();
num++;
que.add(num);
k--;
}
long res = 1;
int mod = 1000000007;
while (!que.isEmpty()) {
res = res * ((long) que.poll()) % mod;
}
return (int)res;
}
}