- 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果):
分析: 当 n = 1 时,有 1 种跳法。
当 n = 2 时,有 2 种跳法。
当n = 3 时,有3种跳法 [1,2] 、[2,1] 、[1,1,1]
当n = 4 时 ,有5种跳法 [1,1,1,1] [2,2] [1,2,1] [2,1,1] [1,1,2]
当n = 5 时 , 有8种。。。。
仔细观察规律,其实就是斐波那契数列,即 f(n) = f(n-1) + f(n-2)
public int JumpFloor(int target) {
//如果 n == 0 ,只有0种放啊
if(target == 0){
return 0;
}
if(target == 1 || target == 2){
return target;
}else{
return JumpFloor(target-1)+JumpFloor(target-2);
}
}
- 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。本以为很难,其实还是有规律的:
分析: 当 n = 1 时,有 1 种跳法。
当 n = 2 时,有 2 种跳法。
当n = 3 时,有4种跳法 [1,2] 、[2,1] 、[1,1,1] .[3]
当n = 4 时 ,有8种跳法 [1,1,1,1] [2,2] [1,2,1] [2,1,1] [1,1,2] ,[3,1],[1,3] [4]
当n = 5 时 , 有16种。。。。
仔细观察规律,其实就是斐波那契数列,即 f(n) = 2* f(n-1)
public int JumpFloorII(int target) {
if(target == 1 ||target == 2|| target == 0){
return target;
}
return 2 * JumpFloorII(target-1);
}