经典的青蛙跳台阶问题

  1. 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果):
    分析: 当 n = 1 时,有 1 种跳法。
    当 n = 2 时,有 2 种跳法。
    当n = 3 时,有3种跳法 [1,2] 、[2,1] 、[1,1,1]
    当n = 4 时 ,有5种跳法 [1,1,1,1] [2,2] [1,2,1] [2,1,1] [1,1,2]
    当n = 5 时 , 有8种。。。。
    仔细观察规律,其实就是斐波那契数列,即 f(n) = f(n-1) + f(n-2)
   public int JumpFloor(int target) {
        //如果 n  == 0 ,只有0种放啊
         if(target == 0){
             return 0;
         }
         if(target == 1 || target == 2){
             return target;
         }else{
             return JumpFloor(target-1)+JumpFloor(target-2);
         }
    }
  1. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。本以为很难,其实还是有规律的:
    分析: 当 n = 1 时,有 1 种跳法。
    当 n = 2 时,有 2 种跳法。
    当n = 3 时,有4种跳法 [1,2] 、[2,1] 、[1,1,1] .[3]
    当n = 4 时 ,有8种跳法 [1,1,1,1] [2,2] [1,2,1] [2,1,1] [1,1,2] ,[3,1],[1,3] [4]
    当n = 5 时 , 有16种。。。。
    仔细观察规律,其实就是斐波那契数列,即 f(n) = 2* f(n-1)
 public int JumpFloorII(int target) {
        if(target == 1 ||target == 2|| target == 0){
            return target;
        }
        return 2 * JumpFloorII(target-1);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值