排列组合C(n,m)以及A(n,m)公式即理解

本文通过实例解释排列组合中的C(n,m)和A(n,m)公式。以A(2,3)为例,展示了顺序要求时的不同情况,指出AB和BA实际上是一种情况,对应C(3,2)。接着讨论了从4个红球和3个黄球中取两个球的场景,说明当取球数量小于某颜色球的个数时,应如何正确计算组合数。" 112456090,10325990,MATLAB数值积分:逆变换法与蒙特卡洛模拟,"['MATLAB编程', '数值计算', '数学模型', '随机数生成', '积分方法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

排列组合C和A的公式

C(n,m)公式

C(n,m) = n!/(m!*(n-m)!) = A(n,m)/A(m,m)

img

A(n,m公式)

A(n,m) = n!/(n-m)! 

img

自己的理解

举个例子,A,B,C三个球,取出其中两个的情况AB,AC,BC,CB,CA,BA。如果对顺序进行要求可以看出有6种结果即A(2.3)。但是如果只对结果要求则AB和BA本质上是一种情况,去除重复的数据就是三种即C(3,2)。

那换个问题有红球4个,黄球3个。从中取出两个球且不考虑顺序。可能我们马上会的出结论C(7,2),结果为21种,但实事是这样吗,我们一一列举出可能性。
两个红球,两个黄球,一个红球一个黄球。结果只有3种可能,
那问题出在哪里呢?
因为我们取得球数量小于红球或黄球的个数所以结果为C(2,2) + C(2,1)。即两种颜色各选一个C(2,2)加上两种颜色里只选一种C(2,1).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值