【数据分析与智能计算】第二章:NumPy库与数组

本文深入探讨Python中NumPy库的应用,详细讲解了数组与列表的区别,如何使用NumPy创建和操作数组,包括多维数组的生成和切片操作。通过实例展示了NumPy的强大功能,适合初学者和进阶者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、列表与数组

Python的自带数据类型中是不存在数组这一种类型的,而是自带了一种和数组相类似的列表类型。

从某种程度上来说,列表仿佛比数组更加“强大”,因为列表里的元素可以是任意类型的;并且类似于“多维数组”的概念我们也可以用“列表套列表”的方式实现。

不过,上述所谓的“强大”在数组的眼中只不过是极度的“不规范”。我们需要一种新的数据类型数组,来保证其中所有的元素都是,这样我们才可以定义元素之间的四则运算,才可以定义数组之间的向量乘法、矩阵乘法等。这些事情是一个数据类型混杂的列表所不能完成的。

我们一般使用第三方库NumPy中定义的numpy.array类作为我们的数组类型。

二、NumPy库的使用

导入库

NumPy库是一个第三方库,所以使用前需要先导入(大家一般将其重命名为np

import numpy as np

实例化一个数组对象

要生成一个数组,无非就是要知道两件事情:1.这个数组的名字是什么? 2.这个数组里面的数是什么?

所以生成一个数组最简单的方法便是数组名 = np.ndarray(列表) 其中等号的右边便是数组对象名,左边括号里填的是一个列表对象,列表里的元素就转换为数组里的元素了。

array1 = np.array([1,2,3,4])
print(array1)
[1 2 3 4]

同样地,如果要生成一个多维数组的话,我们只需要“列表套列表”就行了

list2 = [[11,12],[21,22]] #最外层列表里面又嵌套了一层列表
array2 = np.array(list2) #所以生成的是一个二维数组
print(array2)
print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值