JAVA: 斐波那契数列及其变形

题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。

变形题目:1) 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法?

                 2) 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

                 3) 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析: 首先,递归解法很熟悉。

public int Fibonacci(int n) {
        if(n==0){
            return 0;
        }else if(n==1){
            return 1;
        }else{
            return Fibonacci(n-1)+Fibonacci(n-2);
        }
}

    但是,递归解法有很严重的效率问题,因为有许多计算会不断重复。比如f(5)=f(4)+f(3),而f(4)=f(3)+f(2),这里f(3)就已经计算过两遍。可想而知,当n=100时,其重复计算量会呈指数级上升。递归计算的时间复杂度是以n的指数的方式递增的。

    改进方法:可以把已经计算过的数列中间项保存起来,更加简单的方法是从下往上计算,首先根据f(0)和f(1)计算出f(2),在根据f(1)和f(2)计算出f(3),依此类推计算出f(n)。时间复杂度为O(n)。

public int Fibonacci(int n) {
        int [] result={0,1};
        if(n<2)
            return result[n];
        int fibminousone=1;
        int fibminoustwo=0;
        int fibfinal=0;
        for(int i=2;i<=n;i++){
            fibfinal=fibminousone+fibminoustwo;
            fibminoustwo=fibminousone;
            fibminousone=fibfinal;
        }
        return fibfinal;
    }

    变型: 1) 如果只有1级台阶,则只有1种跳法。如果有2节台阶,有2种跳法:一种是分两次跳,每次跳一层;第二种是一次性跳2层台阶。一般情况,把n级台阶的跳法记为f(n)。当n>2时,第一次跳的时候有两种选择:一个是第一次跳一层,则后面n-1层的跳法为f(n-1);另一个是第一次跳两层,则后面n-2层台阶的跳法为f(n-2)。因此f(n)=f(n-1)+f(n-2)。

               2)  方法一:归纳假设

如果这只青蛙一次只能跳一级或是两级,那问题就很简单,退化到Fibonacci数列就可以了。可变态之处在于,这只青蛙不仅仅可以跳一阶、两阶,它拥有变态超能力可以跳n阶。于是分析过程就不可直接回退到Fibonacci了~ 

下面我们用函数f(n)来表示青蛙跳到第n阶台阶的方式种类。 

当台阶只有1阶时,青蛙只能选择跳1阶,于是: f(1) = 1; 

当台阶有2阶时,它能一次跳1阶,也可以一下跳2阶直接上去,于是: 

f(2) = f(跳1阶)+f(跳2阶) = f(1)+f(一次跳2阶) ; 

当台阶有3阶时,若青蛙首次跳1阶则剩下2阶需要跳,方式种类为f(2);若青蛙首次跳2阶,只剩下一阶可以跳,种类为f(1);当然青蛙也可以直接跳3阶,所以: 

f(3) = f(2)+f(1) + 1 = f(2)+f(1)+f(一次跳3阶); 

为了使过程更清晰,我们再分析下当有4阶台阶时:首次跳1阶则剩下3阶即f(4-1)=f(3);首次跳2阶则剩下种类为f(4-2)=f(2);选择3阶则剩下为f(4-3)=f(1),最后一种一次跳4阶f(跳4阶): 

f(4) = f(3) + f(2)+f(1) +f(一次跳4阶) 

于是假设当有k-1阶台阶时: 

f(k-1) = f(k-2) + f(k-3) + …+f(1) + f(一次跳k-1阶); 

由归纳假设即可得: 

f(k) = f(k-1) + f(k-2) + f(k-3) + …+f(1) + f(一次跳k阶); 

由于1次跳k阶为1种方式所以上式可简化为:

f(1) = 1;
f(2) = f(1)+1 = f(1)+f(1) = 2*f(1) = 2;
f(3) = f(2)+f(1)+1 = f(2)+f(1)+f(1)
     = f(2)+2*f(1) = f(2)+f(2)=2*f(2) = 2*2;
f(k) = f(k-1) + f(k-2) + …+ f(2)+ f(1) + 1
     = f(k-1) + f(k-2) + …+ f(3)+f(2)+f(1) + f(1)
     = f(k-1) + f(k-2) +…+f(3)+f(2) + f(2)
     = f(k-1) + f(k-2) + f(k-3) + …+f(3) + f(3)
     = 2*f(k-1)
     = 2 .^(k-1);

        方法二:直接考虑n阶的可能性

 

其实跳n阶台阶可以拆分成:首次跳1阶,方式即为剩下的n-1阶f(n-1);首次跳2阶,方式即为f(n-2);首次3阶方式为f(n-3),依次…即:

f(n) = f(n-1) + f(n-2) + f(n-3) + …f(2)+f(1);

同理:

f(n-1) = f(n-2) + f(n-3) + …f(2)+f(1) 代入上式即得:
f(n) = 2*f(n-1);

总结出规律后剩下的工作就很简单了,这里选用Java中位移运算:

   public static int JumpFloor(int target) {
        if(target <= 0){
            return 0;
        }
         int time = 1;
        return time <<(target-1);
    }
        3)用第一个1*2的纸去覆盖矩阵有两种方法:第一种是竖着放,则后面1*(n-1)的矩阵覆盖的方法有f(n-1)种;第二种是左上角横着放,左下角也必须横着放一个1*2纸,则右边还剩下2*(n-2)的区域,覆盖的方法有f(n-2)种。所以,f(n)=f(n-1)+f(n-2)。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值