剑指Offer 10-1 斐波那契数列,Java解法参考

剑指Offer 10-1 斐波那契数列,Java解法参考

题目描述

难度: 简单
写一个函数,输入 n,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入: n = 2
输出: 1

示例 2:

输入: n = 5
输出: 5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof

思路(动态规划)

思路

此类题目如果用递归完成,则很可能超时(此处不演示)。常用的方法为动态规划或记忆化搜索。以下代码为动态规划的思路。

首先创立 n + 1 大小的数组,给定前两个元素的值,之后每一项都依据递推公式得出。

代码

class Solution {
    public int fib(int n) {
        if (n < 2) {
            return n;
        }
        int[] res = new int[n + 1];
        res[0] = 0;
        res[1] = 1;
        for (int i = 2; i <= n; i++) {
            res[i] = res[i - 1] + res[i - 2];
            while (res[i] > 1000000007) {
                res[i] = res[i] % 1000000007;
            }
        }
        return res[n];
    }
}

执行结果

执行结果

写在最后

本系列博客仅记录转码过程中刷题时的解法。若有错误,欢迎交流与批评指正。官方解法请见力扣(LeetCode)官网。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值