题目描述
难度: 简单
写一个函数,输入 n,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: n = 2
输出: 1
示例 2:
输入: n = 5
输出: 5
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof
思路(动态规划)
思路
此类题目如果用递归完成,则很可能超时(此处不演示)。常用的方法为动态规划或记忆化搜索。以下代码为动态规划的思路。
首先创立 n + 1 大小的数组,给定前两个元素的值,之后每一项都依据递推公式得出。
代码
class Solution {
public int fib(int n) {
if (n < 2) {
return n;
}
int[] res = new int[n + 1];
res[0] = 0;
res[1] = 1;
for (int i = 2; i <= n; i++) {
res[i] = res[i - 1] + res[i - 2];
while (res[i] > 1000000007) {
res[i] = res[i] % 1000000007;
}
}
return res[n];
}
}
执行结果
写在最后
本系列博客仅记录转码过程中刷题时的解法。若有错误,欢迎交流与批评指正。官方解法请见力扣(LeetCode)官网。