题目:
方法一:考虑所有情况,时间复杂度O(n^2)。
public int FindGreatestSumOfSubArray(int[] array) {
if(array.length<=0) return 0;
int maxOfAllSubArray=Integer.MIN_VALUE;
for(int i=0;i<array.length-1;i++){
int max=maxofSubArray(array,i,array.length);
if(maxOfAllSubArray<max){
maxOfAllSubArray=max;
}
}
return maxOfAllSubArray;
}
public int maxofSubArray(int[]array,int begin,int end){
int cal=array[begin];
int max=array[begin];
for(int i=begin+1;i<end;i++){
cal+=array[i];
if(cal>max)
max=cal;
}
return max;
}
方法二:动态规划
dp[i]:以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
dp[i]=max(dp[i-1]+array[i], array[i])
最后返回最大的值即可。
public int maxSubArray1(int[] nums) {
// write your code here
int len=nums.length;
int max=-Integer.MAX_VALUE;
int[] dp=new int[len+1];
//dp[i]表示以i结尾的子数组的最大和
for(int i=1;i<=len;i++){
dp[i]=Math.max(dp[i-1]+nums[i-1],nums[i-1]);
if(dp[i]>max){
max=dp[i];
}
}
return max;
}
题目:
方法:继续使用上题方法二中的动态规划思想。
- 创建两个长度为nums.length+1的dp数组,含义分别为从左往右和从右往左遍历数组。每个数组left[i]记录从0到当前位置i下的最大子数组之和
- 最后求两个子数组的和最大,就是找left[]从0-i,right[]从i+1到length最大数之和。
public class Solution {
/*
* @param nums: A list of integers
* @return: An integer denotes the sum of max two non-overlapping subarrays
*/
public int maxTwoSubArrays(List<Integer> nums) {
// write your code here
int len=nums.size();
int[] LeftToRight=new int[len+1]; //从左往右遍历的dp
int[] RightToLeft=new int[len+1]; //从右往左遍历的dp
int max0=nums.get(0);
int max1=nums.get(nums.size()-1);
//从左往右遍历
for(int i=1;i<=nums.size();i++){
LeftToRight[i]=Math.max(LeftToRight[i-1]+nums.get(i-1),nums.get(i-1));
}
//从右往左遍历
for(int i=nums.size()-1;i>=0;i--){
RightToLeft[i]=Math.max(RightToLeft[i+1]+nums.get(i),nums.get(i));
}
int max=Integer.MIN_VALUE;
for(int i=1;i< nums.size();i++){
for(int j=i;j<nums.size();j++){
if((LeftToRight[i]+RightToLeft[j])>max)
max=LeftToRight[i]+RightToLeft[j];
}
}
return max;
}
}