matplotlib

本文通过三个练习详细介绍了如何使用matplotlib进行函数绘制、数据展示及直方图与密度估计的实现,是理解matplotlib库的好材料。
摘要由CSDN通过智能技术生成

Exercise 11.1: Plotting a function

x = np.linspace(-2, 2, 1000)
y = np.power((np.sin(x - 2)), 2) * np.exp(-x * x)
plt.plot(x, y)
plt.show()
程序运行结果

Exercise 11.2: Data

X = np.random.randint(10, 20, (20, 10))
b = np.random.random(10)
z = np.random.random(20)
y = np.dot(X, b) + z
b1= np.linalg.lstsq(X, y)[0]  #最小二乘法生成线性方程
x = list(range(1, 11))
plt.scatter(x, b, c='r', marker='x', label='true coefficients')
plt.scatter(x, b1, c='b', marker='o', label='estimated coefficients')
plt.legend()
plt.show()

Exercise 11.3: Histogram and density estimation

x = np.random.normal(size=1000)
x=sorted(x)
plt.hist(x, bins=25,normed=1)
kernel = stats.gaussian_kde(x)
plt.plot(x, kernel.pdf(x))
plt.show()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值