【算法】小团的车辆调度(美团2021校招题)

1. 概述

牛客OJ链接

小团是美团汽车租赁公司的调度师,某个时刻A和B两地都向该公司提交了租车的订单,分别需要a和b辆汽车。此时,公司的所有车辆都在外运营;通过北斗定位,可以得到所有车辆的位置,小团分别计算了每辆车前往A地和B地完成订单的利润。作为一名精明的调度师,当然是想让公司的利润最大化了。请你帮他分别选择a辆车完成A地的任务,选择b辆车完成B地的任务,使得公司获利最大,每辆车最多只能完成一地的任务。

输入描述

输入第一行包含三个整数n, a, b, 分别表示公司的车辆数量和A, B两地订单所需数量,保证a + b <= n(1 <= n <= 2000),接下来有n行,每行两个正整数x, y, 分别表示该车完成A地任务的利润和完成B地任务的利润。

输出描述

输出仅包含一个正整数,表示公司最大获得的利润和。

样例输入
5 2 2
4 2
3 3
5 4
5 3
1 5
样例输出
18

 

2. 解题思路

DFS可以做,但肯定是超时的
这里要用到三维的动态规划,还需要优化三维dp数组到二维,并且减除调不必要的循环,才能满足要求。

动态规划
dp[i][j][k]表示前 i 辆车中派出 j 辆到A地,派出 k 辆到B地可以获得的最大利润

状态转移方程

在这里插入图片描述

 

3. 代码及优化

Java

import java.util.Scanner;

public class Main{
   
    public static void main(String[] args) {
   
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        int a = input.nextInt();
        int b = input.nextInt();
        int[][][] dp = new int[n + 1][a + 1][b + 1];
        int[][] profits = new int[n + 1][2];
        for (int i = 1; i <= n; i++) {
   
            profits[i][0] = input.nextInt();
            profits[i][1] = input.nextInt();
        }
        for (int i = 1; i <= n; i++) {
    //派出i辆车
            for (int j = 0; j <= a; j++) {
    //向A地派出j辆
                for (int k = 0; k <= b; k++) {
    //向B地派出k辆
                    if (j == 0 && k == 0) continue;
                    if (k == 0) {
   
                        //将第i辆车不派出或者派到A地
                        dp[i][j][k] = Math.max(dp[i - 1][j][k], dp[i - 1][j - 1][k] + profits[i][0]);
                    }
                    else if (j == 0) {
   
                        //将第i辆车不派出或者派到B地
                        dp[i][j][k] = Math.max(dp[i - 1][j][k], dp[i - 1][j][k - 1] + profits[i][1]);
                    }
                    else {
   
                        //将第i辆车不派出或者派到A地或者派到B地
                        dp[i][j][k] = Math.max(dp[i - 1][j][k],
                                Math.max(dp[i - 1][j - 1][k] + profits[i][0], dp[i - 1][j][k - 1] + profits[i][1]));
                    }
                }
            }
        }
        int res = dp[n][a][b];
        System.out.println(res);
    }
}

根据动态规划转移方程可看出,状态 i 只取决于状态 i - 1,因此可以像优化 01背包问题 那样将dp数组降维,降低空间复杂度。

因为状态 i 需要用到状态 i - 1 时的值,如果从小到大计算,则需要的 i - 1时的状态已经被覆盖,

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值