简介
本教程演示了如何使用伪不变特征(PIF)匹配技术来通过应用该技术到一对在秘鲁森林砍伐事件前后获取的 Planet SkySat 图像,来协调图像之间的辐射特性。
背景
1.相对辐射归一化技术,如直方图匹配、多元变化检测(MAD)和 PIF 匹配,通过在不同时间、不同条件下或由不同传感器获取的图像之间应用变换,减少辐射差异,从而实现更准确的比较和变化检测(Schroeder 等人,2006 年)。PIF 匹配通过识别图像之间光谱变化最小的区域,即伪不变特征,并基于这些区域之间的光谱差异对整个图像应用线性变换。
2.在加载并对齐前后图像后,下一步是识别光谱稳定、伪不变的特性,这些特性可以用于匹配图像。虽然可以通过识别未改变的区域并数字化围绕它们的点或多边形来手动选择 PIFs,但这种方法可能耗时且主观。光谱距离度量提供了一种自动测量像素之间相似性的方法,然后可以使用这种方法选择具有最小光谱变化的像素子集。
3.使用 spectralDistance 方法计算前后图像之间的光谱信息发散spectral information divergence(SID)。您还可以尝试其他距离度量,如光谱角映射器 spectral angle mapper (SAM&#