pytorch
长夜悠悠
大山坡软件职业技术学院。Qq号12& 828% 331$ 8。(防爬虫,十位的号,缺的最后一位同第一位)
转载文章如需删除,请见谅并联系本人
展开
-
pytorch 学习笔记(一)
本系列转载自http://blog.csdn.net/u012436149/article/details/54627597,仅用作个人学习。pytorch 学习笔记(一)pytorch是一个动态的建图的工具。不像Tensorflow那样,先建图,然后通过feed和run重复执行建好的图。相对来说,pytorch具有更好的灵活性。编写一个深度网络需要关注的地方是:转载 2017-06-15 13:18:33 · 414 阅读 · 0 评论 -
pytorch学习笔记(十):learning rate decay(学习率衰减)
pytorch learning rate decay本文主要是介绍在pytorch中如何使用learning rate decay. 先上代码:def adjust_learning_rate(optimizer, epoch): """ 每50个epoch,学习率以0.99的速率衰减 """ if epoch // 50 == 0:转载 2017-06-15 13:26:23 · 6874 阅读 · 2 评论 -
pytorch学习笔记(九):PyTorch结构介绍
PyTorch结构介绍对PyTorch架构的粗浅理解,不能保证完全正确,但是希望可以从更高层次上对PyTorch上有个整体把握。水平有限,如有错误,欢迎指错,谢谢!几个重要的类型和数值相关的TensorVariableParameterbuffer(这个其实不能叫做类型,其实他就是用来保存tensor的)Tensor: PyTorch中的计算基本都是基于转载 2017-06-15 13:25:39 · 685 阅读 · 0 评论 -
pytorch学习笔记(八):PytTorch可视化工具 visdom
Visdom PyTorch可视化工具本文翻译的时候把 略去了 Torch部分。项目地址一个灵活的可视化工具,可用来对于 实时,富数据的 创建,组织和共享。支持Torch和Numpy。总览基本概念Setup启动可视化接口总结总览Visdom目的是促进远程数据的可视化,重点是支持科学实验。。向您和您的合作者发送可视化 图像,图片转载 2017-06-15 13:24:56 · 1234 阅读 · 0 评论 -
pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解
pytorch 的 hook 机制在看pytorch官方文档的时候,发现在nn.Module部分和Variable部分均有hook的身影。感到很神奇,因为在使用tensorflow的时候没有碰到过这个词。所以打算一探究竟。Variable 的 hookregister_hook(hook)注册一个backward钩子。每次gradients被计算的时候,这个转载 2017-06-15 13:23:54 · 3925 阅读 · 0 评论 -
pytorch学习笔记(六):自定义Datasets
自定义Datasets什么是Datasets:在输入流水线中,我们看到准备数据的代码是这么写的data = datasets.CIFAR10("./data/", transform=transform, train=True, download=True)。datasets.CIFAR10就是一个Datasets子类,data是这个类的一个实例。为什么要定义Datas转载 2017-06-15 13:23:03 · 1053 阅读 · 0 评论 -
pytorch学习笔记(五):保存和加载模型
保存模型和导入模型# 保存和加载整个模型torch.save(model_object, 'model.pkl')model = torch.load('model.pkl')123123# 仅保存和加载模型参数(推荐使用)torch.save(model_object.state_dict(), 'params.pkl')model_object.load_state_dict(to转载 2017-06-15 13:22:19 · 1372 阅读 · 0 评论 -
pytorch学习笔记(四):输入流水线(input pipeline)
pytorch input-pipelineinput-pipeline引包from torchvision import transformsfrom torch.utils.data import Datasetfrom torch.utils.data import DataLoader123123图像预处理# 创建个transform用来处理图像数据t转载 2017-06-15 13:21:26 · 1540 阅读 · 0 评论 -
pytorch学习笔记(三):自动求导
auto gradient本片博文主要是对http://pytorch.org/docs/notes/autograd.html的部分翻译以及自己的理解,如有错误,欢迎指正!Backward过程中排除子图pytorch的BP过程是由一个函数决定的,loss.backward(), 可以看到backward()函数里并没有传要求谁的梯度。那么我们可以大胆猜测,在BP的过程转载 2017-06-15 13:20:27 · 1251 阅读 · 0 评论 -
pytorch学习笔记(二):gradient
gradient在BP的时候,pytorch是将Variable的梯度放在Variable对象中的,我们随时都可以使用Variable.grad得到对应Variable的grad。刚创建Variable的时候,它的grad属性是初始化为0.0的。import torchfrom torch.autograd import Variablew1 = Variable(torch.Te转载 2017-06-15 13:19:50 · 1190 阅读 · 0 评论 -
属于动态图的未来:横向对比PyTorch与Keras
本文属转载,仅用作个人学习。选自reddit作者:Marc Schmidt机器之心编译参与:Rick、李泽南PyTorch 对机器学习领域的影响正在不断扩大,人们在使用中也在不断将其和其他机器学习框架进行对比。最近,Marc Schmidt 在 Reddit 上撰文对 Keras 和 PyTorch 进行了全面的对比。作者认为,PyTorch 在转载 2017-06-15 13:29:07 · 911 阅读 · 0 评论