目录
一.数制的基本内容
1数制的概念
数制:也叫“计数制”,是使用固定的符号和统一的标准来表示数值的方法。
进制:也叫“进位计数制”,是人为规定的带进位的一种计数方法。比如日常使用的十进制数,就是逢十进一。进制包括三个要素,即数位,基数和位权。
数位:表示数字符号在数中所在的位置。比如十进制数4,这个符号4当前所处的特定位置。
基数:表示在某种进位计数制中数位上所能使用的数字符号的个数。比如十进制的基数是10。
位权:表示在某种进位计数制中,数位所代表的大小,即处在某一位上的数字所代表的数值大小。比如十进制数456,第一位的位权是100,第二位的位权是10,第三位的位权是1,以此类推。
2常用进制的分类和表达方式
在计算机的汇编语言中,常用的进制有二进制,八进制,十进制和十六进制。
数制的表示方式有两种:一种是数字表示法,一种是字母后缀表示法。
数字表示法:
如:(10010011)2 代表二进制数
(7623)8 代表八进制数
字母后缀表示法:
二进制 B (binary)
八进制 O (octal)
十进制 D (decimal)
十六进制 H (hexadecimal)
如:(10010011)B 代表二进制数
(7623)O 代表八进制数
3.进制的基本运算规则
二进制:逢二进一
二进制基数为2,数值只使用1或者0来表示。
八进制:逢八进一
八进制基数为8,数制只使用0、1、2、3、4、5、6、7来表示。
十进制:逢十进一
十进制基数为10,数制只使用0、1、2、3、4、5、6、7、8、9来表示。
十六进制:逢十六进一
十六进制基数为16,数制除了使用0、1、2、3、4、5、6、7、8、9以外,还有用A、B、C、D、E、F来表示10到15。
二.数制之间的相互转换
1.十进制转二进制,八进制,十六进制。(连除法)
1.1十进制转二进制
得出二进制数101101111
1.2十进制转八进制
得出八进制数557
1.3十进制数转十六进制
得出十六进制数16F
2.二进制,八进制,十六进制转十进制。
2.1二进制转十进制
例如:(101101111)2
1*+0*
+1*
+1*
+0*
+1*
+1*
+1*
+1*
=367
得出十进制是367
2.2八进制转十进制
例如:(557)8
5*+5*
+7*
=367
得出十进制是367
2.3十六进制转十进制
例如:(16F)16
1*+6*
+15*
=367
得出十进制是367
3.二进制转八进制八进制,十六进制(分组连乘)
3.1二进制转八进制
得出八进制数557
3.2二进制转十六进制
得出十六进制数是16F
4.八进制,十六进制转二进制(分组连除)
4.1八进制转二进制
得出二进制数101101111
4.2十六进制转二进制
得出二进制数101101111