进制概括与转化

目录

一.数制的基本内容

1数制的概念

2常用进制的分类和表达方式

3.进制的基本运算规则

二.数制之间的相互转换

1.十进制转二进制,八进制,十六进制。(连除法)

1.1十进制转二进制

1.2十进制转八进制

1.3十进制数转十六进制

2.二进制,八进制,十六进制转十进制。

2.1二进制转十进制

2.2八进制转十进制

2.3十六进制转十进制

3.二进制转八进制八进制,十六进制(分组连乘)

3.1二进制转八进制

3.2二进制转十六进制

4.八进制,十六进制转二进制(分组连除)

4.1八进制转二进制

4.2十六进制转二进制


一.数制的基本内容

1数制的概念

数制:也叫“计数制”,是使用固定的符号和统一的标准来表示数值的方法。

进制:也叫“进位计数制”,是人为规定的带进位的一种计数方法。比如日常使用的十进制数,就是逢十进一。进制包括三个要素,即数位,基数和位权。

数位:表示数字符号在数中所在的位置。比如十进制数4,这个符号4当前所处的特定位置。

基数:表示在某种进位计数制中数位上所能使用的数字符号的个数。比如十进制的基数是10。

位权:表示在某种进位计数制中,数位所代表的大小,即处在某一位上的数字所代表的数值大小。比如十进制数456,第一位的位权是100,第二位的位权是10,第三位的位权是1,以此类推。

2常用进制的分类和表达方式

在计算机的汇编语言中,常用的进制有二进制,八进制,十进制和十六进制。

数制的表示方式有两种:一种是数字表示法,一种是字母后缀表示法。

数字表示法:

如:(10010011)2 代表二进制数

       (7623)8 代表八进制数

字母后缀表示法:

二进制 B (binary)

八进制 O (octal)

十进制 D (decimal)

十六进制 H (hexadecimal)

如:(10010011)B 代表二进制数

       (7623)O 代表八进制数

3.进制的基本运算规则

二进制:逢二进一

二进制基数为2,数值只使用1或者0来表示。

八进制:逢八进一

八进制基数为8,数制只使用0、1、2、3、4、5、6、7来表示。

十进制:逢十进一

十进制基数为10,数制只使用0、1、2、3、4、5、6、7、8、9来表示。

十六进制:逢十六进一

十六进制基数为16,数制除了使用0、1、2、3、4、5、6、7、8、9以外,还有用A、B、C、D、E、F来表示10到15。

二.数制之间的相互转换

1.十进制转二进制,八进制,十六进制。(连除法)

1.1十进制转二进制

得出二进制数101101111

1.2十进制转八进制

得出八进制数557

1.3十进制数转十六进制

得出十六进制数16F

2.二进制,八进制,十六进制转十进制。

2.1二进制转十进制

例如:(101101111)2

1*2^{8}+0*2^{7}+1*2^{6}+1*2^{5}+0*2^{4}+1*2^{3}+1*2^{2}+1*2^{1}+1*2^{0}=367

得出十进制是367

2.2八进制转十进制

例如:(557)8

5*8^{2}+5*8^{1}+7*8^{0}=367

得出十进制是367

2.3十六进制转十进制

例如:(16F)16

1*16^{2}+6*16^{1}+15*16^{0}=367

得出十进制是367

3.二进制转八进制八进制,十六进制(分组连乘)

3.1二进制转八进制

得出八进制数557

3.2二进制转十六进制

得出十六进制数是16F

4.八进制,十六进制转二进制(分组连除)

4.1八进制转二进制

得出二进制数101101111

4.2十六进制转二进制

得出二进制数101101111

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值