java.util.Math包中判断一个数为素数的方法和求平方根的方法,其中判断为素数的方法感觉思路比较新颖,可以借鉴,求平方根用到了牛顿迭代法。
判断一个数是否为素数(源代码):
//true代表素数
public static boolean isPrime(int N){
if(N<2){
return false;
}
for(int i=2;i*i<=N;i++){
if(N%i==0){
return false;
}
}
return true;
}
求平方根(源代码):
public static double sqrt(double c){
if(c<0) return Double.NaN;
double err = 1e-15;
double t = c;
while(Math.abs(t-c/t)>err*t)
t = (c/t+t) /2.0;
return t;
}
个人理解:构造二次函数,其中c代表y,求x,即 求平方根转化为求x
所以在(c,-c)的切线y-(-c)=(2c)(x-c) 使y=0解得x=c/2+1/2=c/2+0.5
依次类推,直至满足条件Math.abs(t-c/t)<=err*t 改条件代表着浮点数的相等
原理图:图片来自上文博客,侵权即删