一、网格搜索的概念和意义
在机器学习的广阔领域中,模型的性能往往取决于超参数的合理设置。超参数是在模型训练前需要手动设定的参数,如决策树的最大深度、随机森林的树的数量、支持向量机的惩罚参数等,它们不像模型内部的权重参数那样可以通过训练数据自动学习得到(比如线性模型中, y = θ 0 + θ 1 X 1 + θ 2 X 2 + . . . + θ n X n y = \theta_0+\theta_1X_1+\theta_2X_2+...+\theta_nX_n y=θ0+θ1X1+θ2X2+...+θnXn,其中,各个向量的权重参数[ θ 0 , θ 1 , θ 2 , . . . , θ n \theta_0, \theta_1, \theta_2,..., \theta_n θ0,θ1,θ2,...,θn] 是由模型不断调整,以求得损失函数的最小值而得到的,这里的损失函数可以理解为预测值与观测值之间的差值,线性模型常用的损失函数比如有MAE绝对误差,MSE均方误差,R