凸优化问题

1.一个最优化问题的可行域是凸集,并且目标函数是凸函数,则该问题为凸优化问题

2.如果一个优化问题是不带约束的优化,则其优化变量的可行域是一个凸集

3.多个凸集的交集还是凸集,凸集的并集并不是凸集

4.一组约束是线性等式约束线性不等式约束,则它确定的可行域都是凸集

5.凸函数有两种判别方法,一种是从一阶偏导角度构造不等式,一种是从二阶偏导构造海森矩阵

6.凸函数的非负线性组合是凸函数

在上一篇文章中梯度下降法,我们介绍了梯度下降法,它是求解最优化问题的常用算法。但是会遇到局部极值点和鞍点的问题.

换句话说,梯度等于0只是取得极值的必要条件而不是充分条件。而凸优化就是将这个必要条件变成充分条件,即:

天才数学家把这个问题简化后,得到等价的表述:

对于目标函数,我们限定是凸函数;对于优化变量的可行域,我们限定它是凸集

我们把满足上述两个限制条件的最优化问题叫做凸优化问题。如果一个问题是凸优化问题,那么利用梯度下降法,即可得到全局最优解,除此之外,还可以利用牛顿法和拟牛顿法(我们下一篇文章介绍),本文我们就详细介绍凸优化,为此,需要用到预备知识Hessian矩阵。

预备知识

  • Hessian矩阵

海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数f(x1,x2,...,xn)的二阶偏导数组成的方块矩阵, 如果f的所有二阶导数都存在,那么f的海森矩阵即:

该矩阵与函数f有如下关系:

  • 如果Hessian矩阵正定,函数有极小值

  • 如果Hessian矩阵负定,函数有极大值

  • 如果Hessian矩阵不定,则需要进一步讨论

注:Hessian矩阵简写为∇2 f (x)

这里多提一句,海森矩阵被应用于牛顿法解决的大规模优化问题,主要是求解方程的根以及最优化问题。

  • 矩阵的正定性

对于n阶矩阵A,对于任意非0的n维向量x都有

则称矩阵A为正定矩阵。

判定矩阵正定的常用方法有以下3种:

  1. 矩阵的特征值全大于0

  2. 矩阵的所有顺序主子式都大于0

  3. 矩阵合同于单位阵I

同样的我们可以定义矩阵的半正定性,负定性和半负定性

注:关于海森矩阵和矩阵的更多细节,以后我们会专门介绍,这里只需要记住结论,应用结论即可

凸集与凸函数

  • 凸集

对于n维空间中点的集合C,如果对集合中的任意两点x和y,以及实数0 ≤ θ ≤ 1,都有:

则称该集合称为凸集。相应的,点θx+(1-θ)y称为点x和y的凸组合

  • 如果把这个集合画出来,其边界是凸的,没有凹进去的地方

  • 直观来看,把该集合中的任意两点用直线连起来,直线上的点都属于该集合

n维实向量空间Rn。显然如果x,y∈Rn,则有:

如果记得向量空间的定义,这个式子很好理解,就是向量对空间的乘法与加法运算封闭的。这个结论的意义在于:如果一个优化问题是不带约束的优化,则其优化变量的可行域是一个凸集。

这里有一个重要的结论:多个凸集的交集还是凸集,凸集的并集并不是凸集

  • 仿射子空间

给定m行n列的矩阵A和m维向量b,仿射子空间定义为如下向量的集合:

仔细观察发现,这个就是非齐次线性方程组的解集。

我们可以证明:如果一组约束是线性等式约束,则它确定的可行域是一个凸集。

假设x,y∈Rn并且:

对于任意0≤θ ≤1,有:

进一步,定义线性不等式围成的区域的集合:

我们也可以证明:一组约束是线性不等式约束,则它定义的可行域是凸集

对于任意的x,y∈Rn,并且Ax≤b,Ay≤b,如果0≤θ ≤1,则有:

利用上一节的结论,我们可以知道,如果每个等式或者不等式约束条件定义的集合都是凸集,那么这些条件联合起来定义的集合还是凸集,而我们遇到的优化问题中,可能有多个等式和不等式约束,只要每个约束条件定义的可行域是凸集,则同时满足这下约束条件的可行域还是凸集

  • 凸函数

设f(x)为定义在n维欧式空间中某个凸集S上的函数,若对于任意介于0与1之间的实数α以及S中任意不同的两点x1和x2,均有:

称f(x)为定义在凸集S上的凸函数

这是凸函数的标准定义,此外,凸函数也有两种判别方法,我们也介绍,相对来说,第二种方法用得多一些

  • 判别方法1

设f(x)在凸集S上有一阶连续偏导数,则f(x)为S上的凸函数的充要条件为:对于任意不同两点x1和x2,均有

  • 判别方法2

设f(x)在凸集S上有二阶连续偏导数,则f(x)为S上的凸函数的充要条件为:f(x)的Hessian矩阵在S上处处半正定

一个重要结论是凸函数的非负线性组合是凸函数,假设fi是凸函数,并且wi ≥0,则:

也是凸函数。

凸优化

如果一个最优化问题的可行域是凸集,并且目标函数是凸函数,则该问题为凸优化问题。

凸优化问题可以形式化的写成:

其中x为优化变量;f为凸目标函数;C是优化变量的可行域,是一个凸集。

通常情况下,我们用另外一个等价的形式

其中是gi (x)不等式约束函数,为凸函数;hi (x)是等式约束函数,为仿射函数

最后,我们不加证明的给出结论:线性回归、岭回归、支持向量机、逻辑回归、softamax回归都是凸优化问题,因此,都可以利用梯度下降法、牛顿法、拟牛顿法求解其参数。

参考资料:

https://mp.weixin.qq.com/s/GO29W7EOCRY_8S6T6fQgaw

  • 5
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值