【最优化笔记1】引论知识(凸集与凸函数)

这个系列的最优化笔记以唐焕文老师的《实用最优化方法》为基础,主要分享我学习中认为重要的知识点,但不会全盘分享,我也没那个精力。

凸集与凸函数

1. 凸集

定义 :设 Ω \Omega Ω ⊂ \subset R n R^n Rn,如果对于任意的点 x , y ∈ Ω x,y\in\Omega x,yΩ,连接点 x , y x,y x,y的线段上的一切点都在 Ω \Omega Ω中,则称 Ω \Omega Ω是一个凸集。其具体数学判别式为:
对于 ∀ \forall x , y ∈ Ω x,y\in\Omega x,yΩ, ∀ \forall μ ∈ [ 0 , 1 ] \mu\in[0,1] μ[0,1],恒有 μ \mu μ x + ( 1 − μ ) y ∈ Ω x+(1-\mu)y\in\Omega x+(1μ)yΩ,则 Ω \Omega Ω为一个凸集。
e . g . e.g. e.g. : 单点集, R n R^n Rn.

定理1(常考):集合 Ω \Omega Ω ⊂ \subset R n R^n Rn为凸集的充要条件是:点 x ( i ) ∈ Ω ( i = 1 , 2 , . . . , p ) x^{(i)}\in\Omega(i=1,2,...,p) x(i)Ω(i=1,2,...,p)的任意凸组合 [ 1 ] ^{[1]} [1]仍包含在 Ω \Omega Ω中。
[ 1 ] [1] [1]凸组合:设实数 a i ≥ 0 a_i\geq0 ai0 ( i = 1 , 2 , . . . , p ) , ∑ i = 1 p a i = 1 (i=1,2,...,p),\sum_{i=1}^{p}a_i=1 (i=1,2,...,p),i=1pai=1, x ( i ) ∈ R n ( i = 1 , 2 , . . . , p ) x^{(i)}\in R^n(i=1,2,...,p) x(i)Rn(i=1,2,...,p),则称 x = ∑ i = 1 p a i x ( i ) x=\sum_{i=1}^{p}a_ix^{(i)} x=i=1paix(i)为点 x ( 1 ) , x ( 2 ) , . . . , x ( p ) x^{(1)},x^{(2)},...,x^{(p)} x(1),x(2),...,x(p)的一个凸组合。
充分性性显然。
必要性如下
必要性的证明
定理2:任意一组凸集的交集仍为凸集。

2. 凸函数

定义:设 f ( x ) f(x) f(x)是定义在非空凸集 Ω \Omega Ω ⊂ \subset R n R^n Rn上的函数,若对于 ∀ \forall x , y ∈ Ω , ∀ λ ∈ [ 0 , 1 ] x,y\in\Omega, \forall\lambda\in[0,1] x,yΩ,λ[0,1],不等式 f ( λ x + ( 1 − λ ) y ) ≤ λ f ( x ) + ( 1 − λ ) f ( y ) f(\lambda x+(1-\lambda)y) \leq \lambda f(x)+(1-\lambda)f(y) f(λx+(1λ)y)λf(x)+(1λ)f(y)恒成立,则称 f ( x ) f(x) f(x) Ω \Omega Ω的凸函数。
从函数图像上看,则函数图象总是在切线(或切平面)的上方。
注:凸函数的非负线性组合仍未凸函数。(使用定义易证明)。

定理1(凸函数的充要条件1):定义在非空凸集 Ω \Omega Ω ⊂ \subset R n R^n Rn上的 f ( x ) f(x) f(x)为凸函数的充要条件是:
对于 ∀ \forall x , y ∈ Ω x,y\in\Omega x,yΩ,都有: f ( y ) − f ( x ) ≥ ( ∇ f ( x ) ) T ( y − x ) f(y)-f(x)\geq(\nabla f(x))^T(y-x) f(y)f(x)(f(x))T(yx)

定理2(凸函数的充要条件2):定义在非空凸集 Ω \Omega Ω ⊂ \subset R n R^n Rn上的 f ( x ) ∈ C 2 f(x)\in C^2 f(x)C2(即 f ( x ) f(x) f(x)是二阶连续可微的), f ( x ) f(x) f(x)为凸函数的充要条件是:
f ( x ) f(x) f(x)的海赛矩阵 F = ∇ 2 f ( x ) F=\nabla^2f(x) F=2f(x)在整个 Ω \Omega Ω上是半正定的。
(正定则为严格凸函数,逆定理一般不成立)。

3. 凸规划

定义:目标&约束函数在可行解R上为凸函数,则这样的优化问题称为凸规划问题(与线性规划问题没有关系)。

定理1:凸规划问题的可行集R为凸集。
定理2:对于凸规划问题,目标函数 f ( x ) f(x) f(x)的任一局部极小点都是 f ( x ) f(x) f(x)在非空可行集R上的全局极小点。
(证明常考,用反证法证明)。
(若凸规划的问题的目标函数 f ( x ) f(x) f(x)在非空可行集R上是严格凸函数,则该优化问题的全局极小点是唯一的)。
定理2的证明
第一节,完。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值