《机器学习实战》python3中的项目汇总(整理中)

朴素贝叶斯:

1.屏蔽言论https://blog.csdn.net/c406495762/article/details/77341116

2.新浪新闻分类https://blog.csdn.net/c406495762/article/details/77500679

逻辑回归:

我的算法理解:线性回归即为曲线拟合法,有点像最小二乘法。y=wx+b,也是一个最优化问题,目标函数是cost function,最终找到一个最优的w和b。而寻找w和b就是用梯度下降法,在程序中可以用迭代实现,而迭代的步长可以是固定的,也可以是随机的。

逻辑回归理解:在上面的方法得到线性回归方程后,可以根据w和x得到y的预测值,利用sigmoid函数将y的预测值映射到[0,1]区间内,并设置阈值,从而分类。

逻辑回归算法示例:

这就是一个简单的数据集,没什么实际意义。让我们先从这个简单的数据集开始学习。先看下数据集有哪些数据:


这个数据有两维特征,因此可以将数据在一个二维平面上展示出来。我们可以将第一列数据(X1)看作x轴上的值,第二列数据(X2)看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。

Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。

所以要想了解Logistic回归,我们必须先看一看Sigmoid函数 ,我们也可以称它为Logistic函数。它的公式如下:

z是一个矩阵,θ是参数列向量(要求解的),x是样本列向量(给定的数据集)。θ^T表示θ的转置。g(z)函数实现了任意实数到[0,1]的映射,这样我们的数据集([x0,x1,…,xn]),不管是大于1或者小于0,都可以映射到[0,1]区间进行分类。hθ(x)给出了输出为1的概率。比如当hθ(x)=0.7,那么说明有70%的概率输出为1。输出为0的概率是输出为1的补集,也就是30%。

如果我们有合适的参数列向量θ([θ0,θ1,…θn]^T),以及样本列向量x([x0,x1,…,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就可以说样本是正样本,否则样本是负样本。

举个例子,对于"垃圾邮件判别问题",对于给定的邮件(样本),我们定义非垃圾邮件为正类,垃圾邮件为负类。我们通过计算出的概率值即可判定邮件是否是垃圾邮件。

到这里!我们发现!逻辑回归最终的分类结果是由sigmod函数给出的,而函数的输入量z为一个直线方程

这里:z=w0*1+w1*x1+w2*x2;其中w0为常数项目,如果令z=0,则g(z)=0.5,则可得x1和x2的直线方程,即为分割线方程(决策边界)。

当求出参数w后,如何分类呢?

只需将样本x带入z=w0*1+w1*x1+w2*x2,若g(z)>0.5,则是一类;若g(z)<0.5,是另一类。

 

那么问题来了!如何得到合适的参数向量θ?——梯度上升法(θ也是w

详细推导见:https://blog.csdn.net/c406495762/article/details/77723333

 

 

项目名称:预测病马死亡率

这里的数据包含了368个样本和28个特征。然后再利用Logistic回归和随机梯度上升算法来预测病马的生死。

随机梯度上升算法:适用于数据量较大时

梯度上升算法:使用于数据量较小时

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值