Loguru封装类,可直接使用

import time
from loguru import logger
from pathlib import Path

# 获取当前文件路径的父目录
project_path = Path.cwd().parent
log_path = Path(project_path, "log")
t = time.strftime("%Y_%m_%d")


class Loggings:
    __instance = None
    logger.add(f"{log_path}/interface_log_{t}.log", rotation="500MB", encoding="utf-8", enqueue=True,
               retention="10 days")

    def __new__(cls, *args, **kwargs):
        if not cls.__instance:
            cls.__instance = super(Loggings, cls).__new__(cls, *args, **kwargs)

        return cls.__instance

    def info(self, msg):
        return logger.info(msg)

    def debug(self, msg):
        return logger.debug(msg)

    def warning(self, msg):
        return logger.warning(msg)

    def error(self, msg):
        return logger.error(msg)


loggings = Loggings()
if __name__ == '__main__':
    loggings.info("info_test")
    loggings.debug("debug_test")
    loggings.warning("warning_test")
    loggings.error("error_test")
Loguru和Allure是两个在软件开发中常用的工具。Loguru是一个简单而强大的日志记录库,可以帮助开发人员有效地记录和管理日志。而Allure是一个开源的测试报告框架,可以生成漂亮、易读的测试报告。 Loguru可以方便地集成到项目中,通过简单的配置即可开始记录日志。它提供了丰富的日志级别和格式化选项,可以根据需要选择记录详细的信息或只记录关键信息。同时,Loguru还支持将日志输出到不同的目标,如控制台、文件等,方便开发人员根据需求进行灵活设置。 Allure可以与Loguru配合使用,用于对测试进行结果展示和报告生成。在测试代码中,通过使用Allure提供的注解和方法,可以方便地将测试结果与Loguru记录的日志关联起来。这样,当测试失败时,可以通过Allure报告中的链接快速定位并查看对应的日志信息,方便开发人员进行调试和分析。 同时,Allure还提供了丰富的图表和图形展示,可以直观地展示测试用例的执行结果、通过率等指标。开发人员可以通过Allure报告,快速了解项目的测试覆盖率和质量。此外,Allure还支持生成历史记录报告,可以对不同版本的测试结果进行比较和分析,帮助开发人员追踪和解决问题。 综上所述,Loguru和Allure是两个互相补充的工具,在软件开发中同时使用它们可以提高开发人员的工作效率和项目的质量。Loguru可以方便地记录和管理日志,Allure则可以生成漂亮、易读的测试报告,并提供丰富的可视化展示功能。通过Loguru和Allure的配合使用,可以更好地进行测试和调试,提高软件的可靠性和稳定性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值