我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
依旧是斐波那契数列
2*n的大矩形,和n个2*1的小矩形
其中number*2为大矩阵的大小
有以下几种情形:
number <= 0 大矩形为<= 2*0,直接return 1;
number = 1大矩形为2*1,只有一种摆放方法,return1;
number = 2 大矩形为2*2,有两种摆放方法,return2;
number = n 分为两步考虑:
第一次摆放一块 2*1 的小矩阵,则摆放方法总共为f(number - 1)
第一次摆放一块1*2的小矩阵,则摆放方法总共为f(number-2)
因为,摆放了一块1*2的小矩阵,对应下方的1*2摆放方法就确定了,所以为f(number-2)
public int rectCover(int number)
{
// write code here
int a = 1;
int b = 2;
int c = 0;
// write code here
if (number == 1)
{
return 1;
}
if (number == 2)
{
return 2;
}
else
{
for (int i = 3; i <= number; i++)
{
c = a + b;
a = b;
b = c;
}
return c;
}
}