第十章 k-均值算法 10.4 对地图上的点进行聚类

博客内容介绍了如何运用k-均值算法对地图上的点进行聚类,以优化交通工具的调度,使得人们能步行到达簇内的地址。文章讨论了通过调整簇的数量观察聚类效果,并对无监督学习中的聚类进行了概述,特别是k-均值算法的工作原理,包括初始化随机质心、点的分配以及质心的更新。此外,还提到了二分k-均值算法作为提高聚类质量的一种方法。
摘要由CSDN通过智能技术生成

将地图上的点进行聚类,安排交通工具抵达这些簇的质心,然后步行到每个簇内地址。

这里我们直接用给出的文件进行操作,跳过10.4.1节。

添加代码:

def distSLC(vecA, vecB): # 返回地球表面两点之间的距离
    a = sin(vecA[0,1] * pi / 180) * sin(vecB[0,1] * pi / 180)
    b = cos(vecA[0,1] * pi / 180) * cos(vecB[0,1] * pi / 180) * \
                        cos(pi * (vecB[0,0] - vecA[0,0]) / 180)
    return arccos(a + b) * 6371.0

import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust = 5): # 画图,参数为希望得到的簇数目
    datList = []
    for line in open('places.txt').readlines():
        lineArr = line.split('\t')
        datList.append([float(lineArr[4]), float(lineArr[3])])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值