《机器学习实战》
文章平均质量分 87
Dr_David_S
阿里巴巴码农,主要做做NLP业务,兴趣是投资理财。
展开
-
第一章 机器学习基础
《机器学习实战》一书入门导言。原创 2016-12-07 11:01:42 · 324 阅读 · 0 评论 -
第二章 K-近邻算法 及 约会网站配对
K-近邻算法实践原创 2016-12-10 00:26:15 · 761 阅读 · 0 评论 -
第三章 决策树 3.1决策树构造
决策树的构造与应用。一些基本知识。原创 2016-12-15 21:55:25 · 2034 阅读 · 0 评论 -
第三章 决策树 3.2 使用 Matplotlib 注解绘制树形图
上节学习了如何从数据集中创建树,但是字典的表示形式非常不易于理解,而且直接绘制图形也比较困难,这一节我们将使用 Matplotlib库 来创建树形图。原创 2016-12-17 15:46:57 · 5460 阅读 · 1 评论 -
第三章 决策树 3.3+3.4 测试算法:使用决策树执行分类
本节我们将使用决策树构建匪类器,我们可以将它用于实际数据的分类。原创 2016-12-20 17:26:08 · 939 阅读 · 0 评论 -
第十章 利用k-均值聚类算法对未标注数据分组
本章内容:1. K-均值聚类算法。2. 对聚类得到的簇进行后处理。3. 二分K-均值聚类算法。4. 对地理位置进行聚类。========================================================================K-聚类算法是一种无监督学习算法。首先明白什么是无监督学习:输入数据有标签,则为有监督学习,没标签则为无监督学原创 2016-12-24 16:09:19 · 787 阅读 · 0 评论 -
第十章 10.2 提高聚类性能 10.3 二分K-均值算法
上一节提到,在K-均值聚类中的簇的数目K是一个用户预先定义的参数,那么用户如何才能知道 K 的选择是不是正确?如何才能知道生成的簇比较好呢?在包含簇分配结果的矩阵中保存着每个点的误差,即该点到簇质心的距离平方值。下面要做的就是利用该误差来评价聚类质量的方法。原创 2016-12-26 15:38:30 · 531 阅读 · 0 评论 -
第十章 k-均值算法 10.4 对地图上的点进行聚类
将地图上的点进行聚类,安排交通工具抵达这些簇的质心,然后步行到每个簇内地址。这里我们直接用给出的文件进行操作,跳过10.4.1节。原创 2016-12-27 10:28:42 · 7555 阅读 · 0 评论 -
Scikit-Learn 官方示例
部分sklearn示例原创 2017-07-02 23:41:11 · 3698 阅读 · 0 评论