# 数据初始化
import numpy as np
import random
import re
import matplotlib.pyplot as plt
def calcuDistance(vec1, vec2):
# 计算向量1与向量2之间的欧式距离
return np.sqrt(np.sum(np.square(vec1 - vec2))) # 注意这里的减号
def showCluster(centroidList, clusterDict):
# 展示聚类结果
colorMark = ['or', 'ob', 'og', 'ok', 'oy', 'ow'] # 不同簇类标记,o表示圆形,另一个表示颜色
centroidMark = ['dr', 'db', 'dg', 'dk', 'dy', 'dw']
for key in clusterDict.keys():
plt.plot(centroidList[key][0], centroidList[key][1], centroidMark[key], markersize=12) # 质心点
for item in clusterDict[key]:
plt.plot(item[0], item[1], colorMark[key])
plt.show()
def loadDataSet():
dataSet = np.loadtxt("dataSet.csv")
return dataSet
# 1.随机选取k个点作为初始质心。
def initCentroids(dataSet, k):
# 从数据集中随机选取k个数据返回
dataSet = list(dataSet)
return random.sample(dataSet, k)
# 2.对于样本中每一个点,分别求与k点的距离。距离最小者就属于该类。
def minDistance(dataSet, centroidList):
# 对每个属于dataSet的item, 计算item与centroidList中k个质心的距离,找出距离最小的,并将item加入相应的簇类中
clusterDict = dict() # dict保存簇类结果
k = len(centroidList)
for item in dataSet:
vec1 = item
flag = -1
minDis = float("inf") # 初始化为最大值
for i in range(k):
vec2 = centroidList[i]
distance = calcuDistance(vec1, vec2) # error
if distance < minDis:
minDis = distance
flag = i # 循环结束时, flag保存与当前item最近的蔟标记
if flag not in clusterDict.keys():
clusterDict.setdefault(flag, [])
clusterDict[flag].append(item) # 加入相应的类别中
return clusterDict # 不同的类别
# 3.此时对得到的k各类,重新计算新的质心。
def getCentroids(clusterDict):
# 重新计算k个质心
centroidList = []
for key in clusterDict.keys():
centroid = np.mean(clusterDict[key], axis=0)
centroidList.append(centroid)
return centroidList # 得到新的质心
# 4.计算计算各蔟集合间的均方误差,来衡量聚类的效果
def getVar(centroidList, clusterDict):
# 计算各蔟集合间的均方误差
# 将蔟类中各个向量与质心的距离累加求和
sum = 0.0
for key in clusterDict.keys():
vec1 = centroidList[key]
distance = 0.0
for item in clusterDict[key]:
vec2 = item
distance += calcuDistance(vec1, vec2)
sum += distance
return sum
# 测试聚类效果,并可视化
def show_k_means():
dataSet = loadDataSet()
# [[ 1.658985 4.285136], [-3.453687 3.424321], [ 4.838138 -1.151539], [-5.379713 -3.362104], [ 0.972564 2.924086], [-3.567919 1.531611], [ 0.450614 -3.302219], [-3.487105 -1.724432], [ 2.668759 1.594842], [-3.156485 3.191137], [ 3.165506 -3.999838], [-2.786837 -3.099354], [ 4.208187 2.984927], [-2.123337 2.943366], [ 0.704199 -0.479481], [-0.39237 -3.963704], [ 2.831667 1.574018], [-0.790153 3.343144], [ 2.943496 -3.357075], [-3.195883 -2.283926], [ 2.336445 2.875106], [-1.786345 2.554248], [ 2.190101 -1.90602 ], [-3.403367 -2.778288], [ 1.778124 3.880832], [-1.688346 2.230267], [ 2.592976 -2.054368], [-4.007257 -3.207066], [ 2.257734 3.387564], [-2.679011 0.785119], [ 0.939512 -4.023563], [-3.674424 -2.261084], [ 2.046259 2.735279], [-3.18947 1.780269], [ 4.372646 -0.822248], [-2.579316 -3.497576], [ 1.889034 5.1904 ], [-0.798747 2.185588], [ 2.83652 -2.658556], [-3.837877 -3.253815], [ 2.096701 3.886007], [-2.709034 2.923887], [ 3.367037 -3.184789], [-2.121479...
centroidList = initCentroids(dataSet, 4)
clusterDict = minDistance(dataSet, centroidList)
# # getCentroids(clusterDict)
# showCluster(centroidList, clusterDict)
newVar = getVar(centroidList, clusterDict)
oldVar = 1 # 当两次聚类的误差小于某个值是,说明质心基本确定。
times = 2
while abs(newVar - oldVar) >= 0.00001:
centroidList = getCentroids(clusterDict)
clusterDict = minDistance(dataSet, centroidList)
oldVar = newVar
newVar = getVar(centroidList, clusterDict)
times += 1
showCluster(centroidList, clusterDict)
if __name__ == '__main__':
show_k_means()
手动实现kmenas算法
最新推荐文章于 2022-11-28 10:15:00 发布