极限 — 高等数学

考点一:数列极限的定义

定义

在这里插入图片描述

笔记

  1. 当n→∞时,n分之1 = 0
  2. 当n→∞时,q的n次方(|q|<1)=0

考点二:函数极限的定义

定义一

在这里插入图片描述

定义二

在这里插入图片描述

笔记

  1. x→∞,要想极限存在,要求x→+∞ 与 x→-∞ 的时候极限相等,若不相等,则极限不存在。
  2. 当x→x0时,极限存在充要条件:x→x0+ 与 x→x0- 相等且存在
  3. 极限存在,也要求左右极限都存在且相等。
  4. 当x→0,则 x分之1→ ∞
  5. 0分之1 → ∞
  6. 一个数的负N次方等于这个数的N次方的倒数

考点三:极限的四则运算法则

法则

在这里插入图片描述

笔记

  1. √1开n次方 = 1的n分之1次方,例如:√4开平方 = 4的分之一次方 = 2

  2. n^0 = 1,例如:2012^0 = 1

  3. 等比数列前n相和公式
    在这里插入图片描述
    公式描述:公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。

  4. 当分母极限 ≠ 0 成立时,才可以用四则运算法则

  5. 完全平方公式
    在这里插入图片描述

  6. 平方差公式
    在这里插入图片描述
    公式描述:公式表示两个数的和与这两个数的差的积等于这两个数的平方差。

  7. 化简特殊法则,根据分子与分母的最高次幂来相除可化简分式

  8. 同底数幂相乘,底数不变,指数相加

  9. lnM^n = nlnM

  10. lne = 1

  11. 等差数列通项公式
    在这里插入图片描述
    公式描述:其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn

  12. 等差数列求和公式
    在这里插入图片描述
    公式描述:其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。

  13. 有理化就是分子分母通分

  14. 将一个数带到根号里化简需要平方再处,例如:n带入根号2n里化简,就是2n×n^2

考点四:抓大头

定义

在这里插入图片描述

考点五:夹逼定理

定义

在这里插入图片描述

笔记

用夹逼定理需要找出它 ≥ 谁 和 ≤ 谁,遵循:
≤时,分子不变,分母放大
≥时,分子不变,分母缩小

考点六:无穷小与无穷大

无穷小

在这里插入图片描述

无穷小的性质

在这里插入图片描述

无穷大

在这里插入图片描述

无穷小与无穷大的关系

在这里插入图片描述

考点七:无穷小的比较

定义

在这里插入图片描述

常见的等价无穷小

在这里插入图片描述

等价无穷小代换

在这里插入图片描述

笔记

  1. ln(1+x^2) 等价 x^2,例如:ln(1+x分之1) 等价 x分之1
  2. 如果乘除某一个因子,它的极限是一个非0常数,我们可以考虑先把它算出来
  3. 立方差公式
    在这里插入图片描述

考点八:两个重要极限

重要极限一

在这里插入图片描述

重要极限二

在这里插入图片描述

笔记

e^2a=e,得出2a=1,因为1的任何次方都等于它本身,所以推出e=1,然后待续…(还未推完)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王睿丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值