高等数学 1.3函数的极限

一、函数极限的定义

1.自变量趋于有限值时函数的极限

定义:设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某一去心邻域内有定义。如果存在常数 A A A ,对于任意给定的正数 ε \varepsilon ε (不论它多么小),总存在正数 δ \delta δ ,使得当 x x x 满足不等式 0 < ∣ x − x 0 ∣ < δ 0 < | x - x_0 | < \delta 0<xx0<δ 时,对应的函数值 f ( x ) f(x) f(x) 都满足不等式
∣ f ( x ) − A ∣ < ε , \vert f(x) - A \vert < \varepsilon, f(x)A<ε,
那么常数 A A A 就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0 时的极限,记作
lim ⁡ x → x 0 f ( x ) = A 或 f ( x ) → A ( 当 x → x 0 ) \lim_{x \to x_0} f(x) = A \quad 或 \quad f(x) \to A (当 x \to x_0) xx0limf(x)=Af(x)A(xx0)
可简单表述为
lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 , 当 0 < ∣ x − x 0 ∣ < δ 时 , 有 ∣ f ( x ) − A ∣ < ε . \lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0 , \exists \delta > 0 ,当 0 < \vert x - x_0 \vert < \delta 时,有 \vert f(x) - A \vert < \varepsilon . xx0limf(x)=Aε>0,δ>0,0<xx0<δ,f(x)A<ε.

注:定义中 0 < ∣ x − x 0 ∣ 0 < \vert x - x_0 \vert 0<xx0 表示 x ≠ x 0 x \neq x_0 x=x0 ,所以 x → x 0 x \to x_0 xx0 f ( x ) f(x) f(x) 有没有极限,与 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 是否有定义并无关系

x → x 0 x \to x_0 xx0 时函数 f ( x ) f(x) f(x) 的极限概念中, x x x 既从 x 0 x_0 x0 的左侧也从 x 0 x_0 x0 的右侧趋于 x 0 x_0 x0。但有时只能或只需考虑 x x x 仅从 x 0 x_0 x0 的左侧趋于 x 0 x_0 x0 (记作 x → x 0 − x \to x_0^- xx0)的情形,或 x x x 仅从 x 0 x_0 x0 的右侧趋于 x 0 x_0 x0 (记作 x → x 0 + x \to x_0^+ xx0+)的情形。在 x → x 0 − x \to x_0^- xx0 的情形, x x x x 0 x_0 x0 的左侧, x < x 0 x < x_0 x<x0 。在 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0} f(x) = A xx0limf(x)=A 的定义中,把 0 < ∣ x − x 0 ∣ < δ 0 < | x - x_0 | < \delta 0<xx0<δ 改为 x 0 − δ < x < x 0 x_0 - \delta < x < x_0 x0δ<x<x0 ,那么 A A A 就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0 时的左极限,记作
lim ⁡ x → x 0 − = A 或 f ( x 0 − ) = A \lim_{x \to x_0^-} = A \quad 或 \quad f(x_0^-) = A xx0lim=Af(x0)=A
类似地,在 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0} f(x) = A xx0limf(x)=A 的定义中,把 0 < ∣ x − x 0 ∣ < δ 0 < | x - x_0 | < \delta 0<xx0<δ 改为 x 0 < x < x 0 + δ x_0 < x < x_0 +\delta x0<x<x0+δ ,那么 A A A 就叫做函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0 时的右极限,记作
lim ⁡ x → x 0 + = A 或 f ( x 0 + ) = A \lim_{x \to x_0^+} = A \quad 或 \quad f(x_0^+) = A xx0+lim=Af(x0+)=A
左极限与右极限统称为单侧极限

函数 f ( x ) f(x) f(x) x → x 0 x \to x_0 xx0 时极限存在的充分必要条件是左极限及右极限各自存在且相等,即
f ( x 0 − ) = f ( x 0 + ) f(x_0^-) = f(x_0^+) f(x0)=f(x0+)
即使 f ( x 0 − ) f(x_0^-) f(x0) f ( x 0 + ) f(x_0^+) f(x0+) 都存在,但若不相等,则 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0} f(x) xx0limf(x) 也不存在。

2.自变量趋于无穷大时函数的极限

定义: 设函数 f ( x ) f(x) f(x) ∣ x ∣ \vert x \vert x 大于某一正数时有定义。如果存在常数 A A A ,对于任意给定的正数 ε \varepsilon ε (不论它多么小),总存在着正数 X X X ,使得当 x x x 满足不等式 ∣ x ∣ > X \vert x \vert > X x>X 时,对应的函数值 f ( x ) f(x) f(x) 都满足不等式
∣ f ( x ) − A ∣ < ε \vert f(x) - A \vert < \varepsilon f(x)A<ε
那么常数 A A A 就叫做函数 f ( x ) f(x) f(x) x → ∞ x \to \infty x 时的极限,记作
lim ⁡ x → ∞ f ( x ) = A 或 f ( x ) → A ( 当 x → ∞ ) . \lim_{x \to \infty} f(x) = A \quad 或 \quad f(x) \to A (当 x \to \infty ). xlimf(x)=Af(x)A(x).
可简单表述为
lim ⁡ x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 , 当 ∣ x ∣ > X 时 , 有 ∣ f ( x ) − A ∣ < ε . \lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0 , \exists X > 0 ,当 \vert x \vert > X 时,有 \vert f(x) - A \vert < \varepsilon . xlimf(x)=Aε>0,X>0,x>X,f(x)A<ε.

从几何上来说, lim ⁡ x → ∞ f ( x ) = A \lim \limits_{x \to \infty} f(x) = A xlimf(x)=A 的意义是:作直线 y = A − ε y = A - \varepsilon y=Aε 和 $ y = A + \varepsilon $ ,总有一个正数 X X X 存在,使得当 x < − X x < -X x<X x > X x > X x>X 时,函数 y = f ( x ) y = f(x) y=f(x) 的图像位于这两直线之间。这时,直线 y = A y = A y=A 是函数 y = f ( x ) y = f(x) y=f(x) 的图像的水平渐近线

二、函数极限的性质

定理1 (函数极限的唯一性):如果 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0} f(x) xx0limf(x) 存在,那么这极限唯一

定理2(函数极限的局部有界性):如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0} f(x) = A xx0limf(x)=A ,那么存在常数 M > 0 M > 0 M>0 δ > 0 \delta > 0 δ>0 ,使得当 0 < ∣ x − x 0 ∣ < δ 0 < \vert x - x_0 \vert < \delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ ⩽ M \vert f(x) \vert \leqslant M f(x)M

定理3(函数极限的局部保号性):如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0} f(x) = A xx0limf(x)=A ,且 A > 0 A > 0 A>0 (或 A < 0 A < 0 A<0),那么存在常数 δ > 0 \delta >0 δ> ,使得当  0 < ∣ x − x 0 ∣ < δ 0 < \vert x - x_0 \vert < \delta 0<xx0<δ 时,有 f ( x ) > 0 f(x) > 0 f(x)>0 (或 f ( x ) < 0 f(x) < 0 f(x)<0

定理3’:如果 lim ⁡ x → x 0 f ( x ) = A ( A ≠ 0 ) \lim \limits_{x \to x_0} f(x) = A (A \neq 0) xx0limf(x)=A(A=0) ,那么就存在着 x 0 x_0 x0 的某一去心邻域 U ˚ ( x 0 ) \mathring{U} (x_0) U˚(x0) ,当 x ∈ U ˚ ( x 0 ) x \in \mathring{U}(x_0) xU˚(x0) 时,就有 ∣ f ( x ) ∣ > ∣ A ∣ 2 \vert f(x) \vert > \cfrac{\vert A \vert}{2} f(x)>2A

推论:如果在 x 0 x_0 x0 的某去心邻域内 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0 (或 f ( x ) ⩽ 0 f(x) \leqslant 0 f(x)0),而且 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x \to x_0} f(x) = A xx0limf(x)=A ,那么 A ⩾ 0 A \geqslant 0 A0 (或 A ⩽ 0 A \leqslant 0 A0)。

定理4(函数极限与数列极限的关系):如果极限 lim ⁡ x → x 0 f ( x ) \lim \limits_{x \to x_0} f(x) xx0limf(x) 存在, { x n } \{ x_n \} {xn} 为函数 f ( x ) f(x) f(x) 定义域内任一收敛于 x 0 x_0 x0 的数列,且满足 x n ≠ x 0 ( n ∈ N + ) x_n \neq x_0 (n \in \mathbb{N}_+) xn=x0(nN+) ,那么相应的函数值数列 { f ( x n ) } \{ f(x_n) \} {f(xn)} 必收敛,且 lim ⁡ n → ∞ f ( x n ) = lim ⁡ x → x 0 f ( x ) \lim \limits_{n \to \infty} f(x_n) = \lim \limits_{x \to x_0} f(x) nlimf(xn)=xx0limf(x)

原文链接:高等数学 1.3函数的极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值