分类与预测的决策树方法详解
在当今的商业世界中,分类和预测是两个频繁出现的词汇。随着大数据和物联网时代的到来,我们拥有大量的数据来支持企业的决策过程,统计分析变得至关重要。分类旨在预测未来的类别,而预测则致力于预测一个本质上不确定的系统的未来值。本文将聚焦于决策树(DT)方法,详细介绍其原理、构建步骤、相关算法、扩展应用以及实际案例。
1. 决策树基础
决策树是一种用于识别基于多个协变量的分类系统或开发变量预测算法的工具,可处理定性和定量变量。它通过一系列规则将大量数据单元逐步划分为更小的组,每个划分使结果段中的成员在目标上更加相似。
决策树的结构类似于树,由根节点、内部节点和叶节点组成。根节点代表整个数据集,内部节点包含决策函数,用于确定数据的下一步走向,叶节点则给出最终的预测结果。决策树可以根据目标变量分为回归树(目标变量为数值型)和分类树(目标变量为分类型)。
决策树的用途广泛,包括预测未来结果、合并分类变量、选择相关输入变量、评估变量重要性以及处理缺失值等。
2. 决策树的构建步骤
决策树的构建通常遵循以下步骤:
1. 从根节点开始 :以整个数据集作为起始点。
2. 递归分区步骤 :为每个预测变量选择合适的分割点,以最小化子节点的杂质。杂质的定义在回归树和分类树中有所不同,回归树中杂质通常指目标变量的变异性,分类树中则指目标变量的异质性。
3. 预测对应叶节点的Y的最终值 :如果Y是数值型变量,预测值为该叶节点中Y的平均值;如果Y是分类型变量,预测值为该叶节点中Y的众
订阅专栏 解锁全文
2263

被折叠的 条评论
为什么被折叠?



