1
k
!
∑
i
=
2
k
(
A
k
i
−
C
k
i
)
(
3
4
)
i
=
1
k
!
∑
i
=
2
k
(
C
k
i
i
!
−
C
k
i
)
(
3
4
)
i
=
1
k
!
∑
i
=
2
k
C
k
i
i
!
(
3
4
)
i
−
1
k
!
∑
i
=
2
k
C
k
i
(
3
4
)
i
\frac{1}{k!}\sum_{i=2}^k(A_k^i-C_k^i)(\frac{3}{4})^i=\frac{1}{k!}\sum_{i=2}^k(C_k^ii!-C_k^i)(\frac{3}{4})^i=\frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i-\frac{1}{k!}\sum_{i=2}^kC_k^i(\frac{3}{4})^i
k!1∑i=2k(Aki−Cki)(43)i=k!1∑i=2k(Ckii!−Cki)(43)i=k!1∑i=2kCkii!(43)i−k!1∑i=2kCki(43)i,对上两项分开求和
1.求
1
k
!
∑
i
=
2
k
C
k
i
i
!
(
3
4
)
i
\frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i
k!1∑i=2kCkii!(43)i,因为
C
k
i
=
k
!
i
!
(
k
−
i
)
!
C_k^i=\frac{k!}{i!(k-i)!}
Cki=i!(k−i)!k!,代入得
1
k
!
∑
i
=
2
k
C
k
i
i
!
(
3
4
)
i
=
(
3
4
)
k
+
∑
i
=
2
k
−
1
1
(
k
−
i
)
!
(
3
4
)
i
=
(
3
4
)
k
+
(
3
4
)
k
∑
i
=
2
k
−
1
1
(
k
−
i
)
!
(
4
3
)
(
k
−
i
)
\frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i=(\frac{3}{4})^k+\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{3}{4})^i=(\frac{3}{4})^k+(\frac{3}{4})^k\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{4}{3})^{(k-i)}
k!1∑i=2kCkii!(43)i=(43)k+∑i=2k−1(k−i)!1(43)i=(43)k+(43)k∑i=2k−1(k−i)!1(34)(k−i),又因为
lim
k
→
+
∞
∑
i
=
2
k
−
1
1
(
k
−
i
)
!
(
4
3
)
(
k
−
i
)
=
e
4
/
3
\lim_{k \to +\infty}\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{4}{3})^{(k-i)}=e^{4/3}
limk→+∞∑i=2k−1(k−i)!1(34)(k−i)=e4/3,于是原式
=
lim
k
→
+
∞
(
3
4
)
k
+
(
3
4
)
k
e
4
/
3
=
0
=\lim_{k \to +\infty}(\frac{3}{4})^k+(\frac{3}{4})^ke^{4/3}=0
=limk→+∞(43)k+(43)ke4/3=0
2.求
1
k
!
∑
i
=
2
k
C
k
i
(
3
4
)
i
\frac{1}{k!}\sum_{i=2}^kC_k^i(\frac{3}{4})^i
k!1∑i=2kCki(43)i,因为
∑
i
=
0
k
C
k
i
(
3
4
)
i
=
(
1
+
3
4
)
k
\sum_{i=0}^kC_k^i(\frac{3}{4})^i=(1+\frac{3}{4})^k
∑i=0kCki(43)i=(1+43)k,所以原式
=
lim
k
→
+
∞
(
1
+
3
4
)
k
−
1
−
3
4
k
k
!
=
0
=\lim_{k \to +\infty}\frac{(1+\frac{3}{4})^k-1-\frac{3}{4}k}{k!}=0
=limk→+∞k!(1+43)k−1−43k=0
综合式1,2,原式等于0