draft

1 k ! ∑ i = 2 k ( A k i − C k i ) ( 3 4 ) i = 1 k ! ∑ i = 2 k ( C k i i ! − C k i ) ( 3 4 ) i = 1 k ! ∑ i = 2 k C k i i ! ( 3 4 ) i − 1 k ! ∑ i = 2 k C k i ( 3 4 ) i \frac{1}{k!}\sum_{i=2}^k(A_k^i-C_k^i)(\frac{3}{4})^i=\frac{1}{k!}\sum_{i=2}^k(C_k^ii!-C_k^i)(\frac{3}{4})^i=\frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i-\frac{1}{k!}\sum_{i=2}^kC_k^i(\frac{3}{4})^i k!1i=2k(AkiCki)(43)i=k!1i=2k(Ckii!Cki)(43)i=k!1i=2kCkii!(43)ik!1i=2kCki(43)i,对上两项分开求和
1.求 1 k ! ∑ i = 2 k C k i i ! ( 3 4 ) i \frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i k!1i=2kCkii!(43)i,因为 C k i = k ! i ! ( k − i ) ! C_k^i=\frac{k!}{i!(k-i)!} Cki=i!(ki)!k!,代入得 1 k ! ∑ i = 2 k C k i i ! ( 3 4 ) i = ( 3 4 ) k + ∑ i = 2 k − 1 1 ( k − i ) ! ( 3 4 ) i = ( 3 4 ) k + ( 3 4 ) k ∑ i = 2 k − 1 1 ( k − i ) ! ( 4 3 ) ( k − i ) \frac{1}{k!}\sum_{i=2}^kC_k^ii!(\frac{3}{4})^i=(\frac{3}{4})^k+\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{3}{4})^i=(\frac{3}{4})^k+(\frac{3}{4})^k\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{4}{3})^{(k-i)} k!1i=2kCkii!(43)i=(43)k+i=2k1(ki)!1(43)i=(43)k+(43)ki=2k1(ki)!1(34)(ki),又因为 lim ⁡ k → + ∞ ∑ i = 2 k − 1 1 ( k − i ) ! ( 4 3 ) ( k − i ) = e 4 / 3 \lim_{k \to +\infty}\sum_{i=2}^{k-1}\frac{1}{(k-i)!}(\frac{4}{3})^{(k-i)}=e^{4/3} limk+i=2k1(ki)!1(34)(ki)=e4/3,于是原式 = lim ⁡ k → + ∞ ( 3 4 ) k + ( 3 4 ) k e 4 / 3 = 0 =\lim_{k \to +\infty}(\frac{3}{4})^k+(\frac{3}{4})^ke^{4/3}=0 =limk+(43)k+(43)ke4/3=0
2.求 1 k ! ∑ i = 2 k C k i ( 3 4 ) i \frac{1}{k!}\sum_{i=2}^kC_k^i(\frac{3}{4})^i k!1i=2kCki(43)i,因为 ∑ i = 0 k C k i ( 3 4 ) i = ( 1 + 3 4 ) k \sum_{i=0}^kC_k^i(\frac{3}{4})^i=(1+\frac{3}{4})^k i=0kCki(43)i=(1+43)k,所以原式 = lim ⁡ k → + ∞ ( 1 + 3 4 ) k − 1 − 3 4 k k ! = 0 =\lim_{k \to +\infty}\frac{(1+\frac{3}{4})^k-1-\frac{3}{4}k}{k!}=0 =limk+k!(1+43)k143k=0

综合式1,2,原式等于0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值