每天给你送来NLP技术干货!
来自:NLP就该这么学
做学术研究无疑离不开论文写作,写的好不好很大程度上决定了你的论文最终能否被录用,尤其是在国内这个“唯论文”的大环境下,因此如何写好一篇学术论文似乎是任何一名研究生的必修课。下面结合个人自身写作体会以及向大佬学习借鉴的经验,向大家分享论文写作的点滴。
写作原则
学术论文的目的不是为了辞藻华丽(“秀你的蹩脚英语”)而是向学术界的同行们清晰准确地呈现你做的工作
文中信息的呈现应符合读者的认知习惯,深入浅出,引人入胜,帮助读者快速获取文章的核心思想 (信息的易理解度:图 > 表 > 文字 > 公式 > 理论证明)
行文应尽量降低读者的理解难度,提升读者阅读的愉悦感,使得读者能够清晰把握文章逻辑
注意行文严谨,力求全文从章节、段落、句子等不同级别都逻辑严密,争取做到没有一句话没来由,没有一句话没呼应
请务必做到:思路新颖、组织合理、逻辑严密、论证充分、文笔优美、排版美观
典型结构
一般学术论文不太追求论文结构上的创新,而比较关注内容本身。从结构上讲,学术论文更像是“八股文”,主要包含以下几个部分:
标题 (Title)
摘要 (Abstract)
引言 (Introduction)
相关工作 (Related Work)
方法 (Method)
实验 (Experiment)
结论 (Conclusion)
参考文献 (Reference)
标题 - 短小精悍
用一句话概括你做的工作:往往包含了解决的问题和所用的方法
A Unified MRC Framework for Named Entity Recognition
Improved Code Summarization via a Graph Neural Network
Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
可以适当地别出心裁,吸引别人注意
Attention is All you Need
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Have You been Properly Notified? Automatic Compliance Analysis of Privacy Policy Text with GDPR Article 13
摘要 - 文之广告
你需要用几句话全面简洁地概述文章的整体工作,要求用语简单,浅显易懂,争取让外行能看懂
主要组成:
文章关注的问题 (我们要解决的问题是什么?)
文章的核心工作内容 (我们做了什么?)
文章的实现方法 (我们大概怎么做的?)
文章达到的效果 (我们做的怎么样?)
误区:
把所有细节都交待了
用很专业的术语描述
出现数学符号
引言 - 文之关键
这可能是论文中最难写的部分!你需要用几段话讲清楚你的工作,务必行文逻辑严密、论证充分、起承转合、层层递进,能充分论证你工作的必要性和重要性,吸引读者深入阅读后文。
逻辑链:
介绍研究的任务和意义 → 研究现状和存在的主要问题 → 当前最好的工作面临的挑战 → 我们提出方案的出发点和解决思路 → 实验结果了证明本文方法的有效性 → 概述本文主要贡献(切忌overclaim)
段落写作:
在首页(右上角)放置一个图表有助于提高文章可读性
每个段落的起始可以是一个论断性的中心句
下文中采用多个前人工作作为支撑句,围绕中心句展开论证
段(首)尾可以加上衔接句,与(上)下一部分进行连接
方法 - 文之核心
方
这部分你需要详细介绍本文创新方法和技术细节,可采用总-分或总-基础-增强结构进行介绍:
总:介绍本文任务的符号定义,本文方法的框架组成,给读者提供全景式的理解
分:详细介绍各个关键模块或步骤 (每个分的部分中又可以进一步采用总-分结构)
不建议直接在方法部分罗列公式和证明,推荐采用running example来阐述,先用通俗的语言描述背景知识或研究问题(往往就是baseline),而后再给出形式化表述:
e.g., We use an example to illustrate our idea...
Intuitively, ..... Therefore, ... Formally, ....
引言部分对创新性或方法的介绍,不要在方法中简单重复,要前后照应,有所递进,前略后详;由于可能包含大量公式,需要保证公式风格和符号前后统一,新符号的使用需做出解释。
实验 - 扎实可靠
这部分你需要给论文方法提供证据,实验的充分性很大程度上决定了文章能否被录用;一般先介绍实验数据、评测标准、参数设置以及已有的代表性方法;应选取公认的标准数据集(benchmark)和当前可比的SOTA基线系统,提高实验的说服力;
两大类实验:
主实验:在测试集上论证方法的有效性和泛用性;(显著超过baseline)
辅助实验:开发集上,不同超参数的影响;不同模块对本文方法效果的贡献;错误或样例分析等
实验分析部分力求有趣、有意义,当然具体还应根据论文工作的特点而有针对性的设计,一切为体现本文的创新和价值而服务。表述实验结果尽量具体,用富有解释性的文字讲清楚提出的方法到底改善了哪里,是什么导致了性能的提升。
写作细节:
图文并茂,使用图表保证提高文章易读性;
一般我们的方法应放在表格下方,总体性的评估指标(如平均值)应放在表格右侧;
曲线图中图例的顺序尽量与曲线顺序相一致;
图表说明文字应包含充分的信息,具有自解释性 (仅凭图表下方的说明就可以理解,不要让读者跑到正文寻找相关说明)
不辞辛劳,做到极致:想读者之所想,将读者关心的问题事先都想好
相关工作 - 全面到位
这部分你需要通过对已有工作进行梳理,向读者展示你对本领域有全面的认识和把握,应当注意汇总、分类和分析 (按时间发展顺序或技术路线划分)。通过与前人工作的对比凸显你工作的创新性和价值(这是落脚点),而且在每部分的最后,可以指出本工作和前人工作的差异和创新之处。
误区:
时态不一致:过去时、现在完成时混着来用
遗漏重要的相关工作 (可能直接作为reject的理由)
简单地罗列堆砌,缺乏深刻的评论 (应夹叙夹议,时刻与本文工作照应)
通过批评前人工作来说明自己工作的优势 (务必精准客观)
结论 - 总结全文
用一段话简单总结和强调本工作的创新和实验结果,不要再埋包袱、打伏笔(思路:具体任务 - 解决方案 - 实验结果 - 未来扩展)
切忌和摘要、引言简单重复
可顺带说明未来的建议的研究方向和开发问题
若发现论文有些应做而没来得及做的,可以写成本文的未来工作 (向审稿人表明自己也考虑到这个问题,赚点同情分)
总结:写学术论文更像是在讲一个故事,讲的越生动有趣,读者自然愿意去听,讲的漏洞百出索然无味,读者肯定会嗤之以鼻。希望你有故事,讲的还扣人心弦,多姿多彩!!
投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
记得备注呦
整理不易,还望给个在看!