昨天看了中心极限定理,今天写本科论文期间,又抽业余时间看了看大数定律,刚开始差点把本小博主给看蒙了O.O,对就是这样。后来去了知乎上瞅了瞅,还是瞬间懂了。知乎上还是大神云集呀。总之,我大致总结了下,好东西大家齐分享!来看看是啥吧!
一句话解释关系
一句话先解释清楚这俩的关系,这样才能带着结论看问题懂的才快的。
在统计活动中,人们发现,在相同条件下大量重复进行一种随机实验时,一件事情发生的次数与实验次数的比值,即该事件发生的频率值会趋近于某一数值。重复次数多了,这个结论越来越明显。这个就是最早的大数定律。一般大数定律讨论的是n个随机变量平均值的稳定性。
而中心极限定理则是证明了在很一般的条件下,n个随即变量的和当n趋近于正无穷时的极限分布是正态分布。(对,就是它,跟我念,正态分布!O.O哎,哪里都有它,记住记住。)
一句话解释:
大数定律讲的是样本均值收敛到总体均值,说白了就是期望,如图一样:
来自知乎博主慧航
而中心极限定理告诉我们,当样本足够大时,样本均值的分布会慢慢变成正态分布,对,就是如图这个样子:
来自知乎博主慧航
黄色的是标准正态分布的密度函数。
上面是区别,那么联系根据区别也能看出来,都总结的是在独立同分布条件下的随即变量平均值的表现。
数学理论
我们假设有n个独立随机变量,令他们的和为:
那么大数定律(以一般的大数定律为例),它的公式为:
而中心极限定理的公式为:
注意:上面两个公式,一个是值为0,一直均值为0的正太分布;而左边极为相似!但不一样的。第二个公式比第一个公式多了!看出来了吧!
reference
https://www.zhihu.com/question/22913867
知乎博主慧航,Detian Deng
更多精彩内容,请关注 深度学习自然语言处理 公众号,就是下方啦!跟随小博主,每天进步一丢丢!哈哈!