数论定理

欧拉定理

欧拉定理表明,若n,a为正整数,且n,a互质,则:
a φ ( n ) ≡ 1 ( m o d   n ) a^{φ(n)}\equiv1(mod\space n) aφ(n)1(mod n)
其中 φ ( n ) φ(n) φ(n)表示n的欧拉函数

欧拉函数

欧拉函数是小于n的整数中与n互质的数的个数,一般用φ(n)表示。
通式为 φ ( x ) = x ∏ i = 1 n ( 1 − 1 p i ) φ(x)=x\prod_{i=1}^{n}(1-\frac 1{p_i}) φ(x)=xi=1n(1pi1)
其中 p 1 , p 2 … … p n p_1, p_2……p_n p1,p2pn为x的所有质因数,x是不为0的整数。
性质:
φ ( 1 ) = 1 φ(1)=1 φ(1)=1
②当n为质数时, φ ( n ) = n − 1 φ(n)=n-1 φ(n)=n1
③若m,n互质
φ ( n ∗ m ) = φ ( n ) ∗ φ ( m ) φ(n∗m)=φ(n)*φ(m) φ(nm)=φ(n)φ(m)
④当n为奇数时
φ ( 2 n ) = φ ( n ) φ(2n)=φ(n) φ(2n)=φ(n)
⑤若n为p的k次幂
φ ( n ) = p k − p k − 1 = ( p − 1 ) p k − 1 φ(n)=p^k-p^{k-1}=(p-1)p^{k-1} φ(n)=pkpk1=(p1)pk1
⑥对于质数p
n   m o d   p = 0 n\space mod\space p=0 n mod p=0
φ ( n ∗ p ) = φ ( n ) ∗ p φ(n∗p)=φ(n)∗p φ(np)=φ(n)p
n   m o d   p = ̸ 0 n\space mod\space p=\not0 n mod p≠0
φ ( n ∗ p ) = φ ( n ) ∗ ( p − 1 ) φ(n∗p)=φ(n)∗(p−1) φ(np)=φ(n)(p1)

欧拉降幂

根据公式
a b m o d   c ≡ a b % p h i [ m ] + p h i [ m ] m o d   m a^bmod\space c\equiv a^{b\%phi[m]+phi[m]}mod \space m abmod cab%phi[m]+phi[m]mod m
压缩指数(只有当b>phi[m]才能使用)
注意!!!
矩阵的幂次是不能使用的,但是似乎当m为质数的时候也能使用,这个还没有办法确定是对的。

同余性质

①如果 a ≡ b a\equiv b ab(mod m), x ≡ y x\equiv y xy(mod m),则 a + x ≡ b + y a+x\equiv b+y a+xb+y(mod m)。

②如果 a ≡ b a\equiv b ab(mod m), x ≡ y x\equiv y xy(mod m),则 a x ≡ b y ax\equiv by axby(mod m)
(两个同余式对应相乘,同余式两边仍然相等)

③如果 a c ≡ b c ac\equiv bc acbc(mod m),且c和m互质,则 a ≡ b a\equiv b ab(mod m)
(就是说同余式两边可以同时除以一个和模数互质的数,②和③本质上是一样的)

费马小定理

一些奇怪的小定理

①能被9整除的数的特征:其每一位数之和能被9整除
②能被7整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7整除。
③能被11整除的数的规律如下:

1、若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

例: 3080,3+8-0-0=11×1,其奇位数字之和与偶位数字之和的差能被11整除。

2、将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数能被11整除。

例: 32571,分隔成3 25 71,3+25+71=99,99能被11整除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值